Design of enzymatic cascade processes for the production of low-priced chemicals

被引:15
作者
Viviana Ruales-Salcedo, Angela [2 ]
Carlos Higuita, Juan [3 ]
Fontalvo, Javier [2 ]
Woodley, John M. [1 ]
机构
[1] Tech Univ Denmark DTU, Dept Chem & Biochem Engn, PROSYS Res Ctr, Bldg 229, DK-2800 Lyngby, Denmark
[2] Univ Nacl Colombia, Dept Ingn Quim, Grp Invest Aplicac Nuevas Tecnol, Campus La Nubia,Edificio L103, Manizales, Colombia
[3] Univ Nacl Colombia, Dept Ingn Quim, Grp Proc Quim Catalit & Biotecnol, Campus La Nubia,Edificio L103, Manizales, Colombia
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION C-A JOURNAL OF BIOSCIENCES | 2019年 / 74卷 / 3-4期
关键词
biocatalyst; biocatalytic reactions; multi-enzymatic cascade; reaction modules; GLUCONIC ACID; EFFICIENT; ENZYMES;
D O I
10.1515/znc-2018-0190
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
While the application of enzymes to synthetic and industrial problems continues to grow, the major development today is focused on multi-enzymatic cascades. Such systems are particularly attractive, because many commercially available enzymes operate under relatively similar operating conditions. This opens the possibility of one-pot operation with multiple enzymes in a single reactor. In this paper the concept of modules is introduced whereby groups of enzymes are combined in modules, each operating in a single reactor, but with the option of various operating strategies to avoid any complications of nonproductive interactions between the enzymes, substrates or products in a given reactor. In this paper the selection of modules is illustrated using the synthesis of the bulk chemical, gluconic acid, from lignocellulosic waste.
引用
收藏
页码:77 / 84
页数:8
相关论文
共 36 条
[1]  
Abu R., 2017, THESIS U SASKATCHEWA
[2]   Gluconic Acid Production [J].
Pythia Institute of Biotechnology, Research in Biotechnology Co, Vat#. 108851559, Avgi Sohos, Thessaloniki ;
57002, Greece ;
不详 ;
142290, Russia .
Recent Pat. Biotechnol., 2007, 2 (167-180) :167-180
[3]   Fermentative production of gluconic acid: A membrane-integrated Green process [J].
Banerjee, Subhamay ;
Kumar, Ramesh ;
Pal, Parimal .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2018, 84 :76-84
[4]   Dynamic optimization of bioprocesses: Efficient and robust numerical strategies [J].
Banga, JR ;
Balsa-Canto, E ;
Moles, CG ;
Alonso, AA .
JOURNAL OF BIOTECHNOLOGY, 2005, 117 (04) :407-419
[5]   State-of-the-art protein engineering approaches using biological macromolecules: A review from immobilization to implementation view point [J].
Bilal, Muhammad ;
Iqbal, Hafiz M. N. ;
Guo, Shuqi ;
Hu, Hongbo ;
Wang, Wei ;
Zhang, Xuehong .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 108 :893-901
[6]   Engineering the third wave of biocatalysis [J].
Bornscheuer, U. T. ;
Huisman, G. W. ;
Kazlauskas, R. J. ;
Lutz, S. ;
Moore, J. C. ;
Robins, K. .
NATURE, 2012, 485 (7397) :185-194
[7]   Optimizing lipases and related enzymes for efficient application [J].
Bornscheuer, UT ;
Bessler, C ;
Srinivas, R ;
Krishna, SH .
TRENDS IN BIOTECHNOLOGY, 2002, 20 (10) :433-437
[8]   Gluconic acid: Properties, production methods and applications An excellent opportunity for agro-industrial by-products and waste bio-valorization [J].
Canete-Rodriguez, Ana M. ;
Santos-Duenas, Ines M. ;
Jimenez-Hornero, Jorge E. ;
Ehrenreich, Armin ;
Liebl, Wolfgang ;
Garcia-Garcia, Isidoro .
PROCESS BIOCHEMISTRY, 2016, 51 (12) :1891-1903
[9]   Part II. Future perspective on optimization [J].
Grossmann, IE ;
Biegler, LT .
COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (08) :1193-1218
[10]  
Hustede JA, 2012, ULLMANNS ENCY IND CH