Reconfigurable Hardware Design for Automatic Epilepsy Seizure Detection using EEG Signals

被引:0
作者
Rafiammal, S. Syed [1 ]
Jamal, D. Najumnissa [2 ]
Mohideen, S. Kaja [1 ]
机构
[1] BS Abdur Rahman Crescent Inst Sci & Technol, Dept Elect & Commun Engn, Chennai, Tamil Nadu, India
[2] BS Abdur Rahman Crescent Inst Sci & Technol, Dept Elect & Instrumentat Engn, Chennai, Tamil Nadu, India
关键词
seizure detection; FPGA; high level synthesis; Mahalanobis distance; automatic detection; CLASSIFICATION;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reconfigurable circuit designs for automatic seizure detection devices are essential to prevent epilepsy affected people from severe injuries and other health-related problems. In this proposed design, an automatic seizure detection algorithm based on the Linear binary Support Vector Machine learning algorithm (LSVM) is developed and implemented in a Field-Programmable Gate Array (FPGA). The experimental results showed that the mean detection accuracy is 86% and sensitivity is 97%. The resource utilization of the implemented design is less when compared to existing hardware implementations. The power consumption of the proposed design is 76mW at 100MHz. The experimental results assure that a physician can make use of this proposed design in detecting seizure events.
引用
收藏
页码:5803 / 5807
页数:5
相关论文
共 50 条
  • [41] Automatic seizure detection using orthogonal matching pursuit, discrete wavelet transform, and entropy based features of EEG signals
    Zarei, Asghar
    Asl, Babak Mohammadzadeh
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 131
  • [42] RNN and BiLSTM Fusion for Accurate Automatic Epileptic Seizure Diagnosis Using EEG Signals
    Samee, Nagwan Abdel
    Mahmoud, Noha F. F.
    Aldhahri, Eman A. A.
    Rafiq, Ahsan
    Muthanna, Mohammed Saleh Ali
    Ahmad, Ijaz
    LIFE-BASEL, 2022, 12 (12):
  • [43] Automatic seizure detection using Stockwell transform and boosting algorithm for long-term EEG
    Yan, Aiyu
    Zhou, Weidong
    Yuan, Qi
    Yuan, Shasha
    Wu, Qi
    Zhao, Xiuhe
    Wang, Jiwen
    EPILEPSY & BEHAVIOR, 2015, 45 : 8 - 14
  • [44] APPLICATION OF EMPIRICAL MODE DECOMPOSITION (EMD) FOR AUTOMATED DETECTION OF EPILEPSY USING EEG SIGNALS
    Martis, Roshan Joy
    Acharya, U. Rajendra
    Tan, Jen Hong
    Petznick, Andrea
    Yanti, Ratna
    Chua, Chua Kuang
    Ng, E. Y. K.
    Tong, Louis
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2012, 22 (06)
  • [45] Automatic Thresholding Technique Using Reconfigurable Hardware
    Anghelescu, Petre
    CYBERNETICS AND SYSTEMS, 2021, 52 (02) : 145 - 168
  • [46] Automated Machine Learning for Epileptic Seizure Detection Based on EEG Signals
    Liu, Jian
    Du, Yipeng
    Wang, Xiang
    Yue, Wuguang
    Feng, Jim
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (01): : 1995 - 2011
  • [47] A Study on Seizure Detection of EEG Signals Represented in 2D
    Xiong, Zhiwen
    Wang, Huibin
    Zhang, Lili
    Fan, Tanghuai
    Shen, Jie
    Zhao, Yue
    Liu, Yang
    Wu, Qi
    SENSORS, 2021, 21 (15)
  • [48] Seizure detection from EEG signals using Multivariate Empirical Mode Decomposition
    Zahra, Asmat
    Kanwal, Nadia
    Rehman, Naveed ur
    Ehsan, Shoaib
    McDonald-Maier, Klaus D.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 88 : 132 - 141
  • [49] ACCURATE DETECTION OF SEIZURE USING NONLINEAR PARAMETERS EXTRACTED FROM EEG SIGNALS
    Vicnesh, Jahmunah
    Hagiwara, Yuki
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2019, 19 (01)
  • [50] Detection of epileptic seizure in EEG signals using linear least squares preprocessing
    Zamir, Z. Roshan
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 133 : 95 - 109