Comparative characterization of the PvuRts1I family of restriction enzymes and their application in mapping genomic 5-hydroxymethylcytosine

被引:52
作者
Wang, Hua [1 ]
Guan, Shengxi [1 ]
Quimby, Aine [1 ]
Cohen-Karni, Devora [1 ]
Pradhan, Sriharsa [1 ]
Wilson, Geoffrey [1 ]
Roberts, Richard J. [1 ]
Zhu, Zhenyu [1 ]
Zheng, Yu [1 ]
机构
[1] New England BioLabs Inc, Ipswich, MA 01938 USA
关键词
DNA RESTRICTION; ENDONUCLEASES; 5-METHYLCYTOSINE; GLUCOSYLATION; DATABASE; GENES;
D O I
10.1093/nar/gkr607
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
PvuRts1I is a modification-dependent restriction endonuclease that recognizes 5-hydroxyme thylcytosine (5hmC) as well as 5-glucosylhydroxy methylcytosine (5ghmC) in double-stranded DNA. Using PvuRts1I as the founding member, we define a family of homologous proteins with similar DNA modification-dependent recognition properties. At the sequence level, these proteins share a few uniquely conserved features. We show that these enzymes introduce a double-stranded cleavage at the 3'-side away from the recognized modified cytosine. The distances between the cleavage sites and the modified cytosine are fixed within a narrow range, with the majority being 11-13 nt away in the top strand and 9-10 nt away in the bottom strand. The recognition sites of these enzymes generally require two cytosines on opposite strand around the cleavage sites, i.e. 5'-CN(11-13 down arrow)N(9-10)G-3'/3'-GN(9-10 down arrow)N(11-13)C-5', with at least one cytosine being modified for efficient cleavage. As one potential application for these enzymes is to provide useful tools for selectively mapping 5hmC sites, we have compared the relative selectivity of a few PvuRts1I family members towards different forms of modified cytosines. Our results show that the inherently different relative selectivity towards modified cytosines can have practical implications for their application. By using AbaSDFI, a PvuRts1I homolog with the highest relative selectivity towards 5ghmC, to analyze rat brain DNA, we show it is feasible to map genomic 5hmC sites close to base resolution. Our study offers unique tools for determining more accurate hydroxymethylomes in mammalian cells.
引用
收藏
页码:9294 / 9305
页数:12
相关论文
共 25 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element [J].
Chong, SR ;
Mersha, FB ;
Comb, DG ;
Scott, ME ;
Landry, D ;
Vence, LM ;
Perler, FB ;
Benner, J ;
Kucera, RB ;
Hirvonen, CA ;
Pelletier, JJ ;
Paulus, H ;
Xu, MQ .
GENE, 1997, 192 (02) :271-281
[3]   WebLogo: A sequence logo generator [J].
Crooks, GE ;
Hon, G ;
Chandonia, JM ;
Brenner, SE .
GENOME RESEARCH, 2004, 14 (06) :1188-1190
[4]   Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation [J].
Ficz, Gabriella ;
Branco, Miguel R. ;
Seisenberger, Stefanie ;
Santos, Fatima ;
Krueger, Felix ;
Hore, Timothy A. ;
Marques, C. Joana ;
Andrews, Simon ;
Reik, Wolf .
NATURE, 2011, 473 (7347) :398-U589
[5]   The Behaviour of 5-Hydroxymethylcytosine in Bisulfite Sequencing [J].
Huang, Yun ;
Pastor, William A. ;
Shen, Yinghua ;
Tahiliani, Mamta ;
Liu, David R. ;
Rao, Anjana .
PLOS ONE, 2010, 5 (01)
[6]  
ISHAQ M, 1980, J BIOL CHEM, V255, P4040
[7]   MOLECULAR-CLONING AND EXPRESSION OF A NOVEL HYDROXYMETHYLCYTOSINE-SPECIFIC RESTRICTION ENZYME (PVURTS1I) MODULATED BY GLUCOSYLATION OF DNA [J].
JANOSI, L ;
YONEMITSU, H ;
HONG, H ;
KAJI, A .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 242 (01) :45-61
[8]   Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine [J].
Jin, Seung-Gi ;
Kadam, Swati ;
Pfeifer, Gerd P. .
NUCLEIC ACIDS RESEARCH, 2010, 38 (11) :e125-e125
[9]  
KORNBERG S, 1961, J BIOL CHEM, V236, P1487
[10]   The Nuclear DNA Base 5-Hydroxymethylcytosine Is Present in Purkinje Neurons and the Brain [J].
Kriaucionis, Skirmantas ;
Heintz, Nathaniel .
SCIENCE, 2009, 324 (5929) :929-930