Continuously Producible Ultrasensitive Wearable Strain Sensor Assembled with Three-Dimensional Interpenetrating Ag Nanowires/Polyolefin Elastomer Nanofibrous Composite Yarn

被引:114
作者
Zhong, Weibing [1 ]
Liu, Cui [1 ]
Xiang, Chenxue [2 ]
Jin, Yuxia [1 ]
Li, Mufang [2 ]
Liu, Ke [2 ]
Liu, Qiongzhen [2 ]
Wang, Yuedan [2 ]
Sun, Gang [3 ]
Wang, Dong [1 ,2 ]
机构
[1] Donghua Univ, Coll Chem Chem Engn & Biotechnol, Shanghai 201620, Peoples R China
[2] Hubei Key Lab Adv Text Mat & Applicat, Wuhan 430200, Hubei, Peoples R China
[3] Univ Calif Davis, Davis, CA 95616 USA
基金
中国国家自然科学基金;
关键词
nanofibrous yarns; large-scale production; strain sensors; silver nanowires; human motion detection; THERMOPLASTIC ELASTOMER; CARBON NANOTUBES; ELECTRONIC SKIN; FIBERS; PRESSURE; SENSITIVITY; BEHAVIOR; PARAMETERS; TEXTILES; DEVICES;
D O I
10.1021/acsami.7b11431
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Fiber-shaped strain sensors with great flexibility and knittability have been tremendously concerned due to the wide applications in health manager devices, especially in human motion detection and physiological signal monitoring. Herein, a novel fiber-shaped strain sensor has been designed and prepared by interpenetrating Ag nanowires (NWs) into polyolefin elastomer nanofibrous yarn. The easy-to-obtain structure and simple roll-to-roll process make the continuous large-scale production of nanofibrous composite yarn possible. The continuous and alternating stretching and releasing reversibly change the contact probability between AgNWs in this interpenetrating network, leading to the variations of electrical resistance of the sensor. The gauge factors of strain sensors are calculated as high as 13920 and the minimum detection limit is only 0.065%. In addition, the strain sensor shows excellent durability during 4500 cycles with the strain of 10%. The response times of stretching and releasing strains are 10 and 15 ms, respectively. Furthermore, the strain sensor has been successfully applied in human motion detections both in single yarn and knitted fabrics. The result shows the practicability in applications of monitoring limbs movements, eye motion changes, artificial vocal cords, human pulse, and complex motions, which shows great potential in wearable sensors and electronic skin.
引用
收藏
页码:42058 / 42066
页数:9
相关论文
共 42 条
[1]   Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review [J].
Amjadi, Morteza ;
Kyung, Ki-Uk ;
Park, Inkyu ;
Sitti, Metin .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (11) :1678-1698
[2]   Knitted Strain Sensors: Impact of Design Parameters on Sensing Properties [J].
Atalay, Ozgur ;
Kennon, William Richard .
SENSORS, 2014, 14 (03) :4712-4730
[3]   Textile-Based Weft Knitted Strain Sensors: Effect of Fabric Parameters on Sensor Properties [J].
Atalay, Ozgur ;
Kennon, William Richard ;
Husain, Muhammad Dawood .
SENSORS, 2013, 13 (08) :11114-11127
[4]   Super-stretchable, Transparent Carbon Nanotube-Based Capacitive Strain Sensors for Human Motion Detection [J].
Cai, Le ;
Song, Li ;
Luan, Pingshan ;
Zhang, Qiang ;
Zhang, Nan ;
Gao, Qingqing ;
Zhao, Duan ;
Zhang, Xiao ;
Tu, Min ;
Yang, Feng ;
Zhou, Wenbin ;
Fan, Qingxia ;
Luo, Jun ;
Zhou, Weiya ;
Ajayan, Pulickel M. ;
Xie, Sishen .
SCIENTIFIC REPORTS, 2013, 3
[5]   Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain [J].
Cheng, Yin ;
Wang, Ranran ;
Zhai, Haitao ;
Sun, Jing .
NANOSCALE, 2017, 9 (11) :3834-3842
[6]   Highly Stretchable, Hysteresis-Free Ionic Liquid -Based Strain Sensor for Precise Human Motion Monitoring [J].
Choi, Dong Yun ;
Kim, Min Hyeong ;
Oh, Yong Suk ;
Jung, Soo-Ho ;
Jung, Jae Hee ;
Sung, Hyung Jin ;
Lee, Hyung Woo ;
Lee, Hye Moon .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (02) :1770-1780
[7]   Ultra-sensitive Pressure sensor based on guided straight mechanical cracks [J].
Choi, Yong Whan ;
Kang, Daeshik ;
Pikhitsa, Peter V. ;
Lee, Taemin ;
Kim, Sang Moon ;
Lee, Gunhee ;
Tahk, Dongha ;
Choi, Mansoo .
SCIENTIFIC REPORTS, 2017, 7
[8]   Towards tunable resistivity-strain behavior through construction of oriented and selectively distributed conductive networks in conductive polymer composites [J].
Deng, Hua ;
Ji, Mizhi ;
Yan, Dongxue ;
Fu, Sirui ;
Duan, Lingyan ;
Zhang, Mengwei ;
Fu, Qiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (26) :10048-10058
[9]   Carbon-Nanotube Fibers for Wearable Devices and Smart Textiles [J].
Di, Jiangtao ;
Zhang, Xiaohua ;
Yong, Zhenzhong ;
Zhang, Yongyi ;
Li, Da ;
Li, Ru ;
Li, Qingwen .
ADVANCED MATERIALS, 2016, 28 (47) :10529-10538
[10]   A highly stretchable strain sensor based on electrospun carbon nanofibers for human motion monitoring [J].
Ding, Yichun ;
Yang, Jack ;
Tolle, Charles R. ;
Zhu, Zhengtao .
RSC ADVANCES, 2016, 6 (82) :79114-79120