MANIN'S CONJECTURE FOR QUARTIC DEL PEZZO SURFACES WITH A CONIC FIBRATION

被引:20
作者
De la Breteche, R. [1 ]
Browning, T. D. [2 ]
机构
[1] Univ Paris 07, Inst Math Jussieu, F-75251 Paris 13, France
[2] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
RATIONAL-POINTS; BOUNDED HEIGHT;
D O I
10.1215/00127094-1443466
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An asymptotic formula is established for the number of Q-rational points of bounded height on a nonsingular quartic Del Pezzo surface with a conic bundle structure.
引用
收藏
页码:1 / 69
页数:69
相关论文
共 24 条
  • [1] Batyrev VV, 1998, ASTERISQUE, P299
  • [2] Browning TD, 2005, J REINE ANGEW MATH, V584, P83
  • [3] Colliot-Thelene J. -L., 1990, PROGR MATH, V91, P43
  • [4] COLLIOTTHELENE JL, 1987, J REINE ANGEW MATH, V373, P37
  • [5] Daniel S, 1999, J REINE ANGEW MATH, V507, P107
  • [6] Sums of arithmetic functions over values of binary forms
    De la Breteche, R.
    Browning, T. D.
    [J]. ACTA ARITHMETICA, 2006, 125 (03) : 291 - 304
  • [7] The divider problem for 4 degree binary forms
    de la Breteche, R.
    Browning, T. D.
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 646 : 1 - 44
  • [8] Number of points of bounded height on Del Pezzo surfaces of degree 5
    De La Bretèche, R
    [J]. DUKE MATHEMATICAL JOURNAL, 2002, 113 (03) : 421 - 464
  • [9] de la Breteche R., ANN MATH IN PRESS
  • [10] RATIONAL-POINTS OF BOUNDED HEIGHT ON FANO VARIETIES
    FRANKE, J
    MANIN, YI
    TSCHINKEL, Y
    [J]. INVENTIONES MATHEMATICAE, 1989, 95 (02) : 421 - 435