The braided Thompson's groups are of type F∞

被引:27
作者
Bux, Kai-Uwe [1 ]
Fluch, Martin G. [1 ]
Marschler, Marco [1 ]
Witzel, Stefan [2 ]
Zaremsky, Matthew C. B. [3 ]
机构
[1] Univ Bielefeld, Dept Math, D-33501 Bielefeld, Germany
[2] Univ Munster, Inst Math, D-48149 Munster, Germany
[3] SUNY Binghamton, Dept Math Sci, Binghamton, NY 13902 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2016年 / 718卷
关键词
FINITENESS PROPERTIES; CHESSBOARD COMPLEXES; HIGHER GENERATION; SUBGROUPS; ALGEBRA; STRAND;
D O I
10.1515/crelle-2014-0030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the braided Thompson's groups V-br and F-br are of type F-infinity, confirming a conjecture by John Meier. The proof involves showing that matching complexes of arcs on surfaces are highly connected. In an appendix, Zaremsky uses these connectivity results to exhibit families of subgroups of the pure braid group that are highly generating, in the sense of Abels and Holz.
引用
收藏
页码:59 / 101
页数:43
相关论文
共 34 条
  • [21] Farb B., 2012, PRINCETON MATH SER, V49
  • [22] Finiteness and CAT(0) properties of diagram groups
    Farley, DS
    [J]. TOPOLOGY, 2003, 42 (05) : 1065 - 1082
  • [23] THE BRIN-THOMPSON GROUPS sV ARE OF TYPE F∞
    Fluch, Martin G.
    Marschler, Marco
    Witzel, Stefan
    Zaremsky, Matthew C. B.
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2013, 266 (02) : 283 - 295
  • [24] Funar L., 2007, An. tiin. Univ. Al. I. Cuza Iai. Mat. (N.S.), V53, P229
  • [25] The braided Ptolemy-Thompson group is finitely presented
    Funar, Louis
    Kapoudjian, Christophe
    [J]. GEOMETRY & TOPOLOGY, 2008, 12 : 475 - 530
  • [26] The braided Ptolemy-Thompson group is asynchronously combable
    Funar, Louis
    Kapoudjian, Christophe
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2011, 86 (03) : 707 - 768
  • [27] ON TRIANGULATIONS OF SURFACES
    HATCHER, A
    [J]. TOPOLOGY AND ITS APPLICATIONS, 1991, 40 (02) : 189 - 194
  • [28] Kassel C, 2008, GRAD TEXTS MATH, V247, P1, DOI 10.1007/978-0-387-68548-9_1
  • [29] GEOMETRIC PRESENTATIONS FOR THE PURE BRAID GROUP
    Margalit, Dan
    McCammond, Jon
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2009, 18 (01) : 1 - 20
  • [30] Higher generation subgroup sets and the Σ-invariants of graph groups
    Meier, J
    Meinert, H
    Van Wyk, L
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1998, 73 (01) : 22 - 44