The braided Thompson's groups are of type F∞

被引:27
作者
Bux, Kai-Uwe [1 ]
Fluch, Martin G. [1 ]
Marschler, Marco [1 ]
Witzel, Stefan [2 ]
Zaremsky, Matthew C. B. [3 ]
机构
[1] Univ Bielefeld, Dept Math, D-33501 Bielefeld, Germany
[2] Univ Munster, Inst Math, D-48149 Munster, Germany
[3] SUNY Binghamton, Dept Math Sci, Binghamton, NY 13902 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2016年 / 718卷
关键词
FINITENESS PROPERTIES; CHESSBOARD COMPLEXES; HIGHER GENERATION; SUBGROUPS; ALGEBRA; STRAND;
D O I
10.1515/crelle-2014-0030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the braided Thompson's groups V-br and F-br are of type F-infinity, confirming a conjecture by John Meier. The proof involves showing that matching complexes of arcs on surfaces are highly connected. In an appendix, Zaremsky uses these connectivity results to exhibit families of subgroups of the pure braid group that are highly generating, in the sense of Abels and Holz.
引用
收藏
页码:59 / 101
页数:43
相关论文
共 34 条
  • [1] HIGHER GENERATION BY SUBGROUPS
    ABELS, H
    HOLZ, S
    [J]. JOURNAL OF ALGEBRA, 1993, 160 (02) : 310 - 341
  • [2] Abramenko P, 2008, GRAD TEXTS MATH, V248, P1
  • [3] [Anonymous], 1966, Algebraic Topology
  • [4] Decompositions and connectivity of matching and chessboard complexes
    Athanasiadis, CA
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 31 (03) : 395 - 403
  • [5] Conjugacy and dynamics in Thompson's groups
    Belk, James
    Matucci, Francesco
    [J]. GEOMETRIAE DEDICATA, 2014, 169 (01) : 239 - 261
  • [6] Morse theory and finiteness properties of groups
    Bestvina, M
    Brady, N
    [J]. INVENTIONES MATHEMATICAE, 1997, 129 (03) : 445 - 470
  • [7] Birman J. S., 1974, Braids, links, and mapping class groups, V82
  • [8] CHESSBOARD COMPLEXES AND MATCHING COMPLEXES
    BJORNER, A
    LOVASZ, L
    VRECICA, ST
    ZIVALJEVIC, RT
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 49 : 25 - 39
  • [9] Pure braid subgroups of braided Thompson's groups
    Brady, Tom
    Burillo, Jose
    Cleary, Sean
    Stein, Melanie
    [J]. PUBLICACIONS MATEMATIQUES, 2008, 52 (01) : 57 - 89
  • [10] Bridson M. R., 1999, GRUND MATH WISS, V319, DOI DOI 10.1007/978-3-662-12494-9