On-chip phase-change photonic memory and computing

被引:2
作者
Cheng, Zengguang [1 ]
Rios, Carlos [1 ]
Youngblood, Nathan [1 ]
Wright, C. David [2 ]
Pernice, Wolfram H. P. [3 ]
Bhaskaran, Harish [1 ]
机构
[1] Univ Oxford, Dept Mat, 16 Parks Rd, Oxford OX1 3PH, England
[2] Univ Exeter, Dept Engn, Exeter EX4 4QF, Devon, England
[3] Univ Munster, Inst Phys, Heisenbergstr 11, D-48149 Munster, Germany
来源
ACTIVE PHOTONIC PLATFORMS IX | 2017年 / 10345卷
基金
英国工程与自然科学研究理事会;
关键词
On-chip photonics; Phase-change materials; memory; brain-inspired computing; synapse;
D O I
10.1117/12.2272127
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The use of photonics in computing is a hot topic of interest, driven by the need for ever-increasing speed along with reduced power consumption. In existing computing architectures, photonic data storage would dramatically improve the performance by reducing latencies associated with electrical memories. At the same time, the rise of 'big data' and 'deep learning' is driving the quest for non-von Neumann and brain-inspired computing paradigms. To succeed in both aspects, we have demonstrated non-volatile multi-level photonic memory avoiding the von Neumann bottleneck in the existing computing paradigm and a photonic synapse resembling the biological synapses for brain-inspired computing using phase-change materials (Ge2Sb2Te5).
引用
收藏
页数:7
相关论文
共 21 条
[1]   CAN PROGRAMMING BE LIBERATED FROM VON NEUMANN STYLE - FUNCTIONAL STYLE AND ITS ALGEBRA OF PROGRAMS [J].
BACKUS, J .
COMMUNICATIONS OF THE ACM, 1978, 21 (08) :613-641
[2]   Why future supercomputing requires optics [J].
Caulfield, H. John ;
Dolev, Shlomi .
NATURE PHOTONICS, 2010, 4 (05) :261-263
[3]   Convolutional networks for fast, energy-efficient neuromorphic computing [J].
Esser, Steven K. ;
Merolla, Paul A. ;
Arthur, John V. ;
Cassidy, Andrew S. ;
Appuswamy, Rathinakumar ;
Andreopoulos, Alexander ;
Berg, David J. ;
McKinstry, Jeffrey L. ;
Melano, Timothy ;
Barch, Davis R. ;
di Nolfo, Carmelo ;
Datta, Pallab ;
Amir, Arnon ;
Taba, Brian ;
Flickner, Myron D. ;
Modha, Dharmendra S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (41) :11441-11446
[4]  
Hoang B, 2015, INT CONF INTELL NEXT, P121, DOI 10.1109/ICIN.2015.7073817
[5]   Accumulation-Based Computing Using Phase-Change Memories With FET Access Devices [J].
Hosseini, Peiman ;
Sebastian, Abu ;
Papandreou, Nikolaos ;
Wright, C. David ;
Bhaskaran, Harish .
IEEE ELECTRON DEVICE LETTERS, 2015, 36 (09) :975-977
[6]   Integration of nanoscale memristor synapses in neuromorphic computing architectures [J].
Indiveri, Giacomo ;
Linares-Barranco, Bernabe ;
Legenstein, Robert ;
Deligeorgis, George ;
Prodromakis, Themistoklis .
NANOTECHNOLOGY, 2013, 24 (38)
[7]   Artificial Cognitive Systems: From VLSI Networks of Spiking Neurons to Neuromorphic Cognition [J].
Indiveri, Giacomo ;
Chicca, Elisabetta ;
Douglas, Rodney J. .
COGNITIVE COMPUTATION, 2009, 1 (02) :119-127
[8]  
Kandel E.R., 2013, Principles of Neural Science
[9]   Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip [J].
Kuramochi, Eiichi ;
Nozaki, Kengo ;
Shinya, Akihiko ;
Takeda, Koji ;
Sato, Tomonari ;
Matsuo, Shinji ;
Taniyama, Hideaki ;
Sumikura, Hisashi ;
Notomi, Masaya .
NATURE PHOTONICS, 2014, 8 (06) :474-481
[10]   Low-cost and nanoscale non-volatile memory concept for future silicon chips [J].
Lankhorst, MHR ;
Ketelaars, BWSMM ;
Wolters, RAM .
NATURE MATERIALS, 2005, 4 (04) :347-352