During frying operations, vegetable oils break down and compounds with undesirable flavors are produced. Various procedures have been developed to extend the useful life of frying oils, including treatment with bleaching clays. In this article, we describe the activation of kaolin minerals by a combination of grinding and chemical treatments, and report their performance in removing breakdown products generated in palm oil that had been used for 20 hours continuous frying. There was little influence of the original kaolin mineral form on the ability to reduce the free fatty acid (FFA) contents, and grinding only changed FFA reduction from similar to 32% to similar to 36%. However, much greater FFA reductions were obtained after chemical treatment of the ground clays, and the best performing kaolin product gave similar FFA reduction to a commercial bleaching clay (similar to 76% and similar to 77%, respectively). This activated kaolin also produced a reduction in viscosity at 40 degrees C from similar to 73 to 48.4 cSt (compared to 45.5 cSt in the unused oil), and in the peroxide value from 30.0 to 22.0 meq/kg (compared to 10.0 meq/kg in the initial oil). Thus, activated kaolin samples represent a cheap and convenient alternative to conventional bleaching clay for improving common quality parameters in used palm oil, although we also found that the optimum kaolin preparation conditions were different from those that have been reported for raw rice bran oil refining.