Norm of the Hilbert matrix on Bergman and Hardy spaces and a theorem of Nehari type

被引:49
作者
Dostanic, Milutin [3 ]
Jevtic, Miroljub [3 ]
Vukotic, Dragan [1 ,2 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] Matemat Fak, Belgrade 11000, Serbia
[3] Matemat Fak, Belgrade 11000, Serbia
关键词
Hilbert matrix; operator norm; Hardy spaces; Bergman spaces; Hankel operator; Nehari theorem;
D O I
10.1016/j.jfa.2008.02.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Hilbert matrix induces a bounded operator on most Hardy and Bergman spaces, as was shown by Diamantopoulos and Siskakis. We generalize this for any Hankel operator on Hardy spaces by using a result of Hollenbeck and Verbitsky on the Riesz projection and also compute the exact value of the norm of the Hilbert matrix. Using a new technique, we determine the norm of the Hilbert matrix on a wide range of Bergman spaces. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2800 / 2815
页数:16
相关论文
共 18 条
[1]   TRICKS OR TREATS WITH THE HILBERT MATRIX [J].
CHOI, MD .
AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (05) :301-312
[2]   Composition operators and the Hilbert matrix [J].
Diamantopoulos, E ;
Siskakis, AG .
STUDIA MATHEMATICA, 2000, 140 (02) :191-198
[3]   Hilbert matrix on Bergman spaces [J].
Diamantopoulos, E .
ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (03) :1067-1078
[4]  
DUREN P. L., 1970, Theory of Spaces
[5]  
Duren P.L., 2004, MATH SURV MONOGR, V100
[6]  
Gokhberg I., 1968, FUNKT ANAL PRIL, V2, P91
[7]  
Halmos P. R., 1982, HILBERT SPACE PROBLE
[8]  
Hardy Godfrey H, 1997, INEQUALITIES
[9]  
HEDENMALM H, 2000, GRAD TEXTS MATH, V199
[10]  
HEDLUND JH, 1969, P AM MATH SOC, V22, P20