Nomogram for the prediction of diabetic nephropathy risk among patients with type 2 diabetes mellitus based on a questionnaire and biochemical indicators: a retrospective study

被引:37
作者
Hu, Yuhong [1 ]
Shi, Rong [1 ]
Mo, Ruohui [1 ]
Hu, Fan [1 ]
机构
[1] Shanghai Univ Tradit Chinese Med, Sch Publ Hlth, Shanghai, Peoples R China
来源
AGING-US | 2020年 / 12卷 / 11期
关键词
diabetic nephropathy; predictors; nomogram; type 2 diabetes mellitus; risk factors; CHRONIC KIDNEY-DISEASE; BODY-MASS INDEX; BLOOD-PRESSURE CONTROL; GLOMERULAR HYPERFILTRATION; RENAL-DISEASE; FOLLOW-UP; MICROVASCULAR COMPLICATIONS; GLUCOSE CONTROL; UNITED-STATES; PREVALENCE;
D O I
10.18632/aging.103259
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Purpose: Develop a diabetic nephropathy incidence risk nomogram in a Chinese population with type 2 diabetes mellitus. Results: Predictors included systolic blood pressure, diastolic blood pressure, fasting blood glucose, glycosylated hemoglobin A1c, total triglycerides, serum creatinine, blood urea nitrogen and body mass index. The model displayed medium predictive power with a C-index of 0.744 and an area under curve of 0.744. Internal verification of C-index reached 0.737. The decision curve analysis showed the risk threshold was 20%. The value of net reclassification improvement and integrated discrimination improvement were 0.131, 0.05, and that the nomogram could be applied in clinical practice. Conclusion: Diabetic nephropathy incidence risk nomogram incorporating 8 features is useful to predict diabetic nephropathy incidence risk in type 2 diabetes mellitus patients. Methods: Questionnaires, physical examinations and biochemical tests were performed on 3489 T2DM patients in six communities in Shanghai. LASSO regression was used to optimize feature selection by running cyclic coordinate descent. Logistic regression analysis was applied to build a prediction model incorporating the selected features. The C-index, calibration plot, curve analysis, forest plot, net reclassification improvement, integrated discrimination improvement and internal validation were used to validate the discrimination, calibration and clinical usefulness of the model.
引用
收藏
页码:10317 / 10336
页数:20
相关论文
共 80 条
[61]   Glucose variability, HbA1c and microvascular complications [J].
Skrha, Jan ;
Soupal, Jan ;
Skrha, Jan, Jr. ;
Prazny, Martin .
REVIEWS IN ENDOCRINE & METABOLIC DISORDERS, 2016, 17 (01) :103-110
[62]  
Stearne MR, 1998, BMJ-BRIT MED J, V317, P703
[63]   The risk for diabetic nephropathy is low in young adults in a 17-year follow-up from the Diabetes Incidence Study in Sweden (DISS). Older age and higher BMI at diabetes onset can be important risk factors [J].
Svensson, M. K. ;
Tyrberg, M. ;
Nystrom, L. ;
Arnqvist, H. J. ;
Bolinder, J. ;
Ostman, J. ;
Gudbjornsdottir, S. ;
Landin-Olsson, M. ;
Eriksson, J. W. .
DIABETES-METABOLISM RESEARCH AND REVIEWS, 2015, 31 (02) :138-146
[64]   Multiple logistic regression analysis of risk factors in elderly pneumonia patients: QTc interval prolongation as a prognostic factor [J].
Taooka, Yasuyuki ;
Takezawa, Gen ;
Ohe, Miki ;
Sutani, Akihisa ;
Isobe, Takeshi .
MULTIDISCIPLINARY RESPIRATORY MEDICINE, 2014, 9
[65]   Prevalence of diabetes and impaired fasting glucose among 769 792 rural Chinese adults [J].
Tian, Huiguang ;
Song, Guide ;
Xie, Hongxiang ;
Zhang, Hong ;
Tuomilehto, Jaakko ;
Hu, Gang .
DIABETES RESEARCH AND CLINICAL PRACTICE, 2009, 84 (03) :273-278
[66]   Glomerular hyperfiltration: A new marker of metabolic risk [J].
Tomaszewski, M. ;
Charchar, F. J. ;
Maric, C. ;
McClure, J. ;
Crawford, L. ;
Grzeszczak, W. ;
Sattar, N. ;
Zukowska-Szczechowska, E. ;
Dominiczak, A. F. .
KIDNEY INTERNATIONAL, 2007, 71 (08) :816-821
[67]   Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) [J].
Turner, RC ;
Holman, RR ;
Cull, CA ;
Stratton, IM ;
Matthews, DR ;
Frighi, V ;
Manley, SE ;
Neil, A ;
McElroy, K ;
Wright, D ;
Kohner, E ;
Fox, C ;
Hadden, D ;
Mehta, Z ;
Smith, A ;
Nugent, Z ;
Peto, R ;
Adlel, AI ;
Mann, JI ;
Bassett, PA ;
Oakes, SF ;
Dornan, TL ;
Aldington, S ;
Lipinski, H ;
Collum, R ;
Harrison, K ;
MacIntyre, C ;
Skinner, S ;
Mortemore, A ;
Nelson, D ;
Cockley, S ;
Levien, S ;
Bodsworth, L ;
Willox, R ;
Biggs, T ;
Dove, S ;
Beattie, E ;
Gradwell, M ;
Staples, S ;
Lam, R ;
Taylor, F ;
Leung, L ;
Carter, RD ;
Brownlee, SM ;
Fisher, KE ;
Islam, K ;
Jelfs, R ;
Williams, PA ;
Williams, FA ;
Sutton, PJ .
LANCET, 1998, 352 (9131) :837-853
[68]   Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers [J].
Vickers, Andrew J. ;
Cronin, Angel M. ;
Elkin, Elena B. ;
Gonen, Mithat .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2008, 8 (1)
[69]   Predicting medication nonadherence risk in a Chinese inflammatory rheumatic disease population: development and assessment of a new predictive nomogram [J].
Wang, Huijing ;
Zhang, Le ;
Liu, Zhe ;
Wang, Xiaodong ;
Geng, Shikai ;
Li, Jiaoyu ;
Li, Ting ;
Ye, Shuang .
PATIENT PREFERENCE AND ADHERENCE, 2018, 12 :1757-1765
[70]   Prevalence and Ethnic Pattern of Diabetes and Prediabetes in China in 2013 [J].
Wang, Limin ;
Gao, Pei ;
Zhang, Mei ;
Huang, Zhengjing ;
Zhang, Dudan ;
Deng, Qian ;
Li, Yichong ;
Zhao, Zhenping ;
Qin, Xueying ;
Jin, Danyao ;
Zhou, Maigeng ;
Tang, Xun ;
Hu, Yonghua ;
Wang, Linhong .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 317 (24) :2515-2523