A 4D x-ray computer microtomography for high-temperature electrochemistry

被引:24
作者
Jiao, Handong [1 ]
Qu, Zhaoliang [1 ]
Jiao, Shuqiang [1 ,2 ]
Gao, Yang [2 ]
Li, Shijie [1 ]
Song, Wei-Li [1 ]
Chen, Haosen [1 ]
Zhu, Hongmin [3 ]
Zhu, Rongqi [4 ]
Fang, Daining [1 ]
机构
[1] Beijing Inst Technol, Inst Adv Struct Technol, Beijing 100081, Peoples R China
[2] Univ Sci & Technol Beijing, State Key Lab Adv Met, Beijing 100083, Peoples R China
[3] Tohoku Univ, Aobo Ku, 6-6-02 Aramaki Aza Aoba, Sendai, Miyagi 9808579, Japan
[4] Peking Univ, Coll Engn, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-PURITY TITANIUM; IONS; EQUILIBRIUM; BEHAVIOR; METAL;
D O I
10.1126/sciadv.abm5678
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-temperature electrochemistry is widely used in many fields. However, real-time observations and an in-depth understanding of the inside evolution of this system from an experimental perspective remain limited because of harsh reaction conditions and multiphysics fields. Here, we tackled this challenge with a high-temperature electrolysis facility developed in-house. This facility permits in situ x-ray computer microtomography (mu-CT) for nondestructive and quantitative three-dimensional (3D) imaging. In an electrorefining system, the mu-CT probed the dynamic evolution of 3D morphology and components of electrodes (4D). Subsequently, this 4D process was visually presented via reconstructed images. The results monitor the efficiency of the process, explore the dynamic mechanisms, and even offer real-time optimization. This 4D analysis platform is notable for in-depth combinations of traditional electrochemistry with digital twin technologies owing to its multiscale visualization and high efficiency of data extraction.
引用
收藏
页数:9
相关论文
共 31 条
  • [1] Ale A, 2012, NAT METHODS, V9, P615, DOI [10.1038/nmeth.2014, 10.1038/NMETH.2014]
  • [2] Bale HA, 2013, NAT MATER, V12, P40, DOI [10.1038/nmat3497, 10.1038/NMAT3497]
  • [3] Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode
    Bi, Yujing
    Tao, Jinhui
    Wu, Yuqin
    Li, Linze
    Xu, Yaobin
    Hu, Enyuan
    Wu, Bingbin
    Hu, Jiangtao
    Wang, Chongmin
    Zhan, Ji-Guang
    Qi, Yue
    Xiao, Jie
    [J]. SCIENCE, 2020, 370 (6522) : 1313 - +
  • [4] Investigating microstructural evolution during the electroreduction of UO2 to U in LiCl-KCl eutectic using focused ion beam tomography
    Brown, L. D.
    Abdulaziz, R.
    Tjaden, B.
    Inman, D.
    Brett, D. J. L.
    Shearing, P. R.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2016, 480 : 355 - 361
  • [5] STUDY OF TI(III) SOLUTIONS IN VARIOUS MOLTEN ALKALI CHLORIDES .1. CHEMICAL AND ELECTROCHEMICAL INVESTIGATION
    CHASSAING, E
    BASILE, F
    LORTHIOIR, G
    [J]. JOURNAL OF APPLIED ELECTROCHEMISTRY, 1981, 11 (02) : 187 - 191
  • [6] Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride
    Chen, GZ
    Fray, DJ
    Farthing, TW
    [J]. NATURE, 2000, 407 (6802) : 361 - 364
  • [7] HAARBERG GM, 1993, J APPL ELECTROCHEM, V23, P217
  • [8] Resolving Li-Ion Battery Electrode Particles Using Rapid Lab-Based X-Ray Nano-Computed Tomography for High-Throughput Quantification
    Heenan, Thomas M. M.
    Llewellyn, Alice, V
    Leach, Andrew S.
    Kok, Matthew D. R.
    Tan, Chun
    Jervis, Rhodri
    Brett, Dan J. L.
    Shearing, Paul R.
    [J]. ADVANCED SCIENCE, 2020, 7 (12)
  • [9] Tracking interfacial single-molecule pH and binding dynamics via vibrational spectroscopy
    Huang, Junyang
    Grys, David-Benjamin
    Griffiths, Jack
    de Nijs, Bart
    Kamp, Marlous
    Lin, Qianqi
    Baumberg, Jeremy J.
    [J]. SCIENCE ADVANCES, 2021, 7 (23)
  • [10] Anodic Bubble Behavior in a Laboratory Scale Transparent Electrolytic Cell for Aluminum Electrolysis
    Huang, Yipeng
    Wang, Zhaowen
    Yang, Youjian
    Gao, Bingliang
    Shi, Zhongning
    Hu, Xianwei
    [J]. METALS, 2018, 8 (10):