The promising photo anode of graphene/zinc titanium mixed metal oxides for the CdS quantum dot-sensitized solar cell

被引:31
作者
Cao, Jiupeng [1 ]
Zhu, Yatong [1 ]
Yang, Xiaoyu [1 ]
Chen, Yang [1 ]
Li, Yuxiang [1 ]
Xiao, Hongdi [1 ]
Hou, Wanguo [2 ]
Liu, Jianqiang [1 ]
机构
[1] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China
[2] Shandong Univ, Key Lab Colloid & Interface Chem, Minist Educ, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene; Quantum dot sensitized solar cell; Layered double hydroxide; Mixed metal oxides; Photo anode; PHOTOVOLTAIC PERFORMANCE; CHARGE-TRANSPORT; TIO2; FILMS; EFFICIENCY; NANOSHEETS; LAYER; CIRCUIT;
D O I
10.1016/j.solmat.2016.08.003
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, the graphene sheets produced by supercritical CO2 exfoliation of graphite were used to improve the photovoltaic performance of the CdS quantum dot-sensitized solar cells (QDSSCs). The zinc titanium mixed metal oxides (MMO) based on layered double hydroxide (LDH) precursor and the graphene/MMO hybrid materials were used as photoanodes of the CdS QDSSCs, respectively. The presence of graphene in the photoanodes was confirmed by Raman spectroscopy, X-ray diffraction (XRD) and Energy-dispersive X-ray spectroscopy (EDS). The influence of graphene concentration on the performance of CdS QDSSCs was studied by electrochemical method. The addition of graphene enhanced QDs adsorption properties and lowered internal resistance, so the QDSSCs displayed higher power conversion efficiency (PCE). Accordingly, the highest PCE of the QDSSCs based on graphene/Zn-Ti MMO photoanode reached 0.44% and increased 37.5% in compared with that based on plain Zn-Ti MMO working electrodes. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:814 / 819
页数:6
相关论文
共 40 条
[1]   Tuning photocurrent response through size control of CdTe quantum dots sensitized solar cells [J].
Badawi, Ali ;
Al-Hosiny, N. ;
Abdallah, Said ;
Negm, S. ;
Talaat, H. .
SOLAR ENERGY, 2013, 88 :137-143
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Incorporation of graphene in quantum dot sensitized solar cells based on ZnO nanorods [J].
Chen, Jing ;
Li, Chu ;
Eda, Goki ;
Zhang, Yan ;
Lei, Wei ;
Chhowalla, Manish ;
Milne, William I. ;
Deng, Wei-Qiao .
CHEMICAL COMMUNICATIONS, 2011, 47 (21) :6084-6086
[4]   Enhanced photovoltaic performance of a dye-sensitized solar cell using graphene-TiO2 photoanode prepared by a novel in situ simultaneous reduction-hydrolysis technique [J].
Chen, Liang ;
Zhou, Yong ;
Tu, Wenguang ;
Li, Zhengdao ;
Bao, Chunxiong ;
Dai, Hui ;
Yu, Tao ;
Liu, Jianguo ;
Zou, Zhigang .
NANOSCALE, 2013, 5 (08) :3481-3485
[5]   Anion-Doped Mixed Metal Oxide Nanostructures Derived from Layered Double Hydroxide as Visible Light Photocatalysts [J].
Cho, Seungho ;
Jang, Ji-Wook ;
Kong, Ki-jeong ;
Kim, Eun Sun ;
Lee, Kun-Hong ;
Lee, Jae Sung .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (19) :2348-2356
[6]   Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells [J].
Crisp, Ryan W. ;
Kroupa, Daniel M. ;
Marshall, Ashley R. ;
Miller, Elisa M. ;
Zhang, Jianbing ;
Beard, Matthew C. ;
Luther, Joseph M. .
SCIENTIFIC REPORTS, 2015, 5
[7]   Efficient In2S3 Quantum dot-sensitized Solar Cells: A Promising Power Conversion Efficiency of 1.30% [J].
Duan, Jialong ;
Tang, Qunwei ;
He, Benlin ;
Yu, Liangmin .
ELECTROCHIMICA ACTA, 2014, 139 :381-385
[8]   Improved properties of dye-sensitized solar cells by incorporation of graphene into the photoelectrodes [J].
Fang, Xiaoli ;
Li, Meiya ;
Guo, Kaimo ;
Zhu, Yongdan ;
Hu, Zhongqiang ;
Liu, Xiaolian ;
Chen, Bolei ;
Zhao, Xingzhong .
ELECTROCHIMICA ACTA, 2012, 65 :174-178
[9]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[10]   Thermal and photocatalytic behavior of Ti/LDH nanocomposites [J].
Hadnadjev-Kostic, M. ;
Vulic, T. ;
Ranogajec, J. ;
Marinkovic-Neducin, R. ;
Radosavljevic-Mihajlovic, A. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2013, 111 (02) :1155-1162