Omics Pipe: a community-based framework for reproducible multi-omics data analysis

被引:40
|
作者
Fisch, Kathleen M. [1 ]
Meissner, Tobias [1 ]
Gioia, Louis [1 ]
Ducom, Jean-Christophe [2 ]
Carland, Tristan M. [3 ]
Loguercio, Salvatore [1 ]
Su, Andrew I. [1 ]
机构
[1] Scripps Res Inst, Dept Mol & Expt Med, La Jolla, CA 92037 USA
[2] Scripps Res Inst, La Jolla, CA 92037 USA
[3] J Craig Venter Inst, Dept Human Biol, La Jolla, CA 92037 USA
关键词
DIFFERENTIAL EXPRESSION ANALYSIS; BIOCONDUCTOR PACKAGE; GENE; TOOL;
D O I
10.1093/bioinformatics/btv061
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Omics Pipe (http://sulab.scripps.edu/omicspipe) is a computational framework that automates multi-omics data analysis pipelines on high performance compute clusters and in the cloud. It supports best practice published pipelines for RNA-seq, miRNA-seq, Exome-seq, Whole-Genome sequencing, ChIP-seq analyses and automatic processing of data from The Cancer Genome Atlas (TCGA). Omics Pipe provides researchers with a tool for reproducible, open source and extensible next generation sequencing analysis. The goal of Omics Pipe is to democratize next-generation sequencing analysis by dramatically increasing the accessibility and reproducibility of best practice computational pipelines, which will enable researchers to generate biologically meaningful and interpretable results. Results: Using Omics Pipe, we analyzed 100 TCGA breast invasive carcinoma paired tumor-normal datasets based on the latest UCSC hg19 RefSeq annotation. Omics Pipe automatically downloaded and processed the desired TCGA samples on a high throughput compute cluster to produce a results report for each sample. We aggregated the individual sample results and compared them to the analysis in the original publications. This comparison revealed high overlap between the analyses, as well as novel findings due to the use of updated annotations and methods.
引用
收藏
页码:1724 / 1728
页数:5
相关论文
共 50 条
  • [1] Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets
    Argelaguet, Ricard
    Velten, Britta
    Arnol, Damien
    Dietrich, Sascha
    Zenz, Thorsten
    Marioni, John C.
    Buettner, Florian
    Huber, Wolfgang
    Stegle, Oliver
    MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
  • [2] Survey on Multi-omics, and Multi-omics Data Analysis, Integration and Application
    Shahrajabian, Mohamad Hesam
    Sun, Wenli
    CURRENT PHARMACEUTICAL ANALYSIS, 2023, 19 (04) : 267 - 281
  • [3] Visual analysis of multi-omics data
    Swart, Austin
    Caspi, Ron
    Paley, Suzanne
    Karp, Peter D.
    FRONTIERS IN BIOINFORMATICS, 2024, 4
  • [4] Community-led, integrated, reproducible multi-omics with anvi'o
    Eren, A. Murat
    Kiefl, Evan
    Shaiber, Alon
    Veseli, Iva
    Miller, Samuel E.
    Schechter, Matthew S.
    Fink, Isaac
    Pan, Jessica N.
    Yousef, Mahmoud
    Fogarty, Emily C.
    Trigodet, Florian
    Watson, Andrea R.
    Esen, Ozcan C.
    Moore, Ryan M.
    Clayssen, Quentin
    Lee, Michael D.
    Kivenson, Veronika
    Graham, Elaina D.
    Merrill, Bryan D.
    Karkman, Antti
    Blankenberg, Daniel
    Eppley, John M.
    Sjodin, Andreas
    Scott, Jarrod J.
    Vazquez-Campos, Xabier
    McKay, Luke J.
    McDaniel, Elizabeth A.
    Stevens, Sarah L. R.
    Anderson, Rika E.
    Fuessel, Jessika
    Fernandez-Guerra, Antonio
    Maignien, Lois
    Delmont, Tom O.
    Willis, Amy D.
    NATURE MICROBIOLOGY, 2021, 6 (01) : 3 - 6
  • [5] Community-led, integrated, reproducible multi-omics with anvi’o
    A. Murat Eren
    Evan Kiefl
    Alon Shaiber
    Iva Veseli
    Samuel E. Miller
    Matthew S. Schechter
    Isaac Fink
    Jessica N. Pan
    Mahmoud Yousef
    Emily C. Fogarty
    Florian Trigodet
    Andrea R. Watson
    Özcan C. Esen
    Ryan M. Moore
    Quentin Clayssen
    Michael D. Lee
    Veronika Kivenson
    Elaina D. Graham
    Bryan D. Merrill
    Antti Karkman
    Daniel Blankenberg
    John M. Eppley
    Andreas Sjödin
    Jarrod J. Scott
    Xabier Vázquez-Campos
    Luke J. McKay
    Elizabeth A. McDaniel
    Sarah L. R. Stevens
    Rika E. Anderson
    Jessika Fuessel
    Antonio Fernandez-Guerra
    Lois Maignien
    Tom O. Delmont
    Amy D. Willis
    Nature Microbiology, 2021, 6 : 3 - 6
  • [6] Machine learning for the analysis of multi-omics data
    Sun, Yanni
    METHODS, 2021, 189 : 1 - 2
  • [7] Multi-omics analysis of Japanese lung adenocarcinoma including mitochondria omics data
    Asada, Ken
    Bolatkan, Amina
    Shiraishi, Kouya
    Horinouchi, Hidehito
    Yoshida, Yukihiro
    Mukai, Masami
    Yatabe, Yasushi
    Kohno, Takashi
    Hamamoto, Ryuji
    CANCER SCIENCE, 2025, 116 : 106 - 106
  • [8] Self-omics: A Self-supervised Learning Framework for Multi-omics Cancer Data
    Hashim, Sayed
    Nandakumar, Karthik
    Yaqub, Mohammad
    BIOCOMPUTING 2023, PSB 2023, 2023, : 263 - 274
  • [9] The Omics Dashboard for Interactive Exploration of Metabolomics and Multi-Omics Data
    Paley, Suzanne
    Karp, Peter D.
    METABOLITES, 2024, 14 (01)
  • [10] A framework for block-wise missing data in multi-omics
    Baena-Miret, Sergi
    Reverter, Ferran
    Vegas, Esteban
    PLOS ONE, 2024, 19 (07):