Modeling and Experimental Evaluation of Bending Behavior of Soft Pneumatic Actuators Made of Discrete Actuation Chambers

被引:156
作者
Alici, Gursel [1 ,2 ]
Canty, Taylor [1 ]
Mutlu, Rahim [1 ,2 ]
Hu, Weiping [1 ]
Sencadas, Vitor [1 ,2 ]
机构
[1] Univ Wollongong, Sch Mech Mat Mechatron & Biomed Engn, Northfields Ave, Wollongong, NSW 2522, Australia
[2] Univ Wollongong, ARC Ctr Excellence Electromat Sci, Wollongong, NSW, Australia
关键词
soft pneumatic actuators; mathematical modeling; soft robotic gripper; soft robotics; DESIGN; ROBOTICS;
D O I
10.1089/soro.2016.0052
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this article, we have established an analytical model to estimate the quasi-static bending displacement (i.e., angle) of the pneumatic actuators made of two different elastomeric silicones (Elastosil M4601 with a bulk modulus of elasticity of 262kPa and Translucent Soft silicone with a bulk modulus of elasticity of 48kPaboth experimentally determined) and of discrete chambers, partially separated from each other with a gap in between the chambers to increase the magnitude of their bending angle. The numerical bending angle results from the proposed gray-box model, and the corresponding experimental results match well that the model is accurate enough to predict the bending behavior of this class of pneumatic soft actuators. Further, by using the experimental bending angle results and blocking force results, the effective modulus of elasticity of the actuators is estimated from a blocking force model. The numerical and experimental results presented show that the bending angle and blocking force models are valid for this class of pneumatic actuators. Another contribution of this study is to incorporate a bistable flexible thin metal typified by a tape measure into the topology of the actuators to prevent the deflection of the actuators under their own weight when operating in the vertical plane.
引用
收藏
页码:24 / 35
页数:12
相关论文
共 38 条
[1]   Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices [J].
Agarwal, Gunjan ;
Besuchet, Nicolas ;
Audergon, Basile ;
Paik, Jamie .
SCIENTIFIC REPORTS, 2016, 6
[3]  
[Anonymous], INTRO POLYM PHYS
[4]  
[Anonymous], EDITORIAL SPECIAL IS
[5]  
[Anonymous], IEEE T ROBOT AUTOM
[6]  
[Anonymous], IEEE T ROBOT
[7]   25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters [J].
Bauer, Siegfried ;
Bauer-Gogonea, Simona ;
Graz, Ingrid ;
Kaltenbrunner, Martin ;
Keplinger, Christoph ;
Schwoediauer, Reinhard .
ADVANCED MATERIALS, 2014, 26 (01) :149-162
[8]  
Bilodeau RA, 2015, IEEE INT C INT ROBOT, P2324, DOI 10.1109/IROS.2015.7353690
[9]   A spatial bending fluidic actuator: fabrication and quasi-static characteristics [J].
Chang, Benjamin ;
Chew, Allison ;
Naghshineh, Nastaran ;
Menon, Carlo .
SMART MATERIALS AND STRUCTURES, 2012, 21 (04)
[10]   Measurement and modeling of McKibben pneumatic artificial muscles [J].
Chou, CP ;
Hannaford, B .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1996, 12 (01) :90-102