Spatiotemporal Dynamics in a Predator-Prey Model with Functional Response Increasing in Both Predator and Prey Densities

被引:25
|
作者
Yang, Ruizhi [1 ]
Song, Qiannan [1 ]
An, Yong [1 ]
机构
[1] Northeast Forestry Univ, Dept Math, Harbin 150040, Peoples R China
关键词
predator-prey model; Turing-Hopf bifurcation; Hopf bifurcation; Turing instability; BIFURCATION-ANALYSIS; SYSTEM; DIFFUSION;
D O I
10.3390/math10010017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a diffusive predator-prey system with a functional response that increases in both predator and prey densities is considered. By analyzing the characteristic roots of the partial differential equation system, the Turing instability and Hopf bifurcation are studied. In order to consider the dynamics of the model where the Turing bifurcation curve and the Hopf bifurcation curve intersect, we chose the diffusion coefficients d(1) and beta as bifurcating parameters. In particular, the normal form of Turing-Hopf bifurcation was calculated so that we could obtain the phase diagram. For parameters in each region of the phase diagram, there are different types of solutions, and their dynamic properties are extremely rich. In this study, we have used some numerical simulations in order to confirm these ideas.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] A Predator-Prey Model with Functional Response and Stage Structure for Prey
    Sun, Xiao-Ke
    Huo, Hai-Feng
    Zhang, Xiao-Bing
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [22] Bifurcation Analysis and Spatiotemporal Patterns in a Diffusive Predator-Prey Model
    Hu, Guangping
    Li, Xiaoling
    Lu, Shiping
    Wang, Yuepeng
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (06):
  • [23] Dynamics of a Stochastic Predator-Prey Model with Stage Structure for Predator and Holling Type II Functional Response
    Liu, Qun
    Jiang, Daqing
    Hayat, Tasawar
    Alsaedi, Ahmed
    JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (03) : 1151 - 1187
  • [24] Pattern Dynamics in a Spatial Predator-Prey Model with Nonmonotonic Response Function
    Li, Xiaoling
    Hu, Guangping
    Feng, Zhaosheng
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (06):
  • [25] Dynamics of a Predator-Prey Model with the Additive Predation in Prey
    Bai, Dingyong
    Zhang, Xiaoxuan
    MATHEMATICS, 2022, 10 (04)
  • [26] Global dynamics of a delayed predator-prey model with stage structure for the predator and the prey
    Wang, Lingshu
    Feng, Guanghui
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (17) : 3937 - 3949
  • [27] Dynamics of a predator-prey model with disease in the predator
    Pal, Pallav Jyoti
    Haque, Mainul
    Mandal, Prashanta Kumar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (16) : 2429 - 2450
  • [28] Spatiotemporal dynamics of a diffusive predator-prey model with fear effect*
    Liu, Jia
    Kang, Yun
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2022, 27 (05): : 841 - 862
  • [29] On The Dynamics of a Predator-Prey Model with Delays and Diffusion
    Wang, Yuquan
    Ma, Junying
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 326 - 332
  • [30] A PREDATOR-PREY MODEL WITH COOPERATIVE HUNTING IN THE PREDATOR AND GROUP DEFENSE IN THE PREY
    Du, Yanfei
    Niu, Ben
    Wei, Junjie
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (10): : 5845 - 5881