Performance of a 3D printed cellular structure inspired by bone

被引:58
作者
Ghazlan, Abdallah [1 ]
Tuan Nguyen [1 ]
Tuan Ngo [1 ]
Linforth, Steven [1 ]
Van Tu Le [1 ]
机构
[1] Univ Melbourne, Melbourne, Vic, Australia
关键词
Bioinspired; 3D printing; Trabecular bone; Thin-walled cellular structure; Numerical analysis; MECHANICAL-BEHAVIOR; COMPOSITE; PANELS; GEOMETRY; QUILLS; FOAM;
D O I
10.1016/j.tws.2020.106713
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Biological thin-walled cellular structures have intricate arrangements that facilitate lightweight and high energy absorption. A prime example is trabecular bone, which possesses a unique thin-walled cellular structure of connected rods or plates, to minimise weight whilst meeting the loading demands from the body. For example, the femur has a closed cell structure of plates to transmit heavy loads to the ground, whereas a carpal bone has an open cell structure of connected rods. Although existing lightweight thin-walled cellular structures with controlled arrangements have been investigated extensively, such as those with re-entrant geometries, asymmetric instability due to local buckling can hinder their energy absorption capacity. Mimicking the features of trabecular bone can offer the designer a greater degree of control over the buckling and collapse mechanisms of thin-walled cellular structures. This can lead to the development of high-performance protective systems with superior energy absorption capabilities. This study employs 3D printing and finite element analysis techniques to mimic and investigate several key features of the plate-like thin-walled cellular structure of trabecular bone. The performance of the developed bioinspired structure is benchmarked against traditional hexagonal and re-entrant designs. The controlled and progressive buckling and collapse mechanisms observed in the bioinspired structure result in superior energy absorption over its re-entrant and hexagonal counterparts.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Powder-Based 3D Printed Porous Structure and Its Application as Bone Scaffold
    Zhao, Yingchun
    Hou, Yue
    Li, Zhaoyu
    Wang, Ziyu
    Yan, Xinxin
    FRONTIERS IN MATERIALS, 2020, 7
  • [22] Enhancing microwave absorption of bio-inspired structure through 3D printed concentric infill pattern
    Dong, Huaiyu
    Gao, Shuailong
    Yu, Chen
    Wang, Zhichen
    Huang, Yixing
    Zhao, Tian
    Li, Ying
    COMPOSITES PART B-ENGINEERING, 2025, 289
  • [23] Thermal performance exploration of 3D printed cob
    Gomaa, Mohamed
    Carfrae, Jim
    Goodhew, Steve
    Jabi, Wassim
    Reyez, Alejandro Veliz
    ARCHITECTURAL SCIENCE REVIEW, 2019, 62 (03) : 230 - 237
  • [24] Bending Performance of Thin 3D Printed Antennas
    Heileman, Grant D.
    Reese, Malcolm S.
    Doyle, Derek
    Christodoulou, Christos G.
    2020 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND NORTH AMERICAN RADIO SCIENCE MEETING, 2020, : 1869 - 1870
  • [25] Structure and properties of mortar printed on a 3D printer
    Mukhametrakhimov, R. Kh
    Lukmanova, L., V
    MAGAZINE OF CIVIL ENGINEERING, 2021, 102 (02):
  • [26] 3D Printed Polyurethane Scaffolds for the Repair of Bone Defects
    Cooke, Megan E.
    Ramirez-GarciaLuna, Jose L.
    Rangel-Berridi, Karla
    Park, Hyeree
    Nazhat, Showan N.
    Weber, Michael H.
    Henderson, Janet E.
    Rosenzweig, Derek H.
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [27] 3D Printed Chromophoric Sensors
    Brounstein, Zachary
    Ronquillo, Jarrod
    Labouriau, Andrea
    CHEMOSENSORS, 2021, 9 (11)
  • [28] Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu
    Xu, Zeqian
    Qi, Xuanyu
    Bao, Minyue
    Zhou, Tian
    Shi, Junfeng
    Xu, Zhiyan
    Zhou, Mingliang
    Boccaccini, Aldo R.
    Zheng, Kai
    Jiang, Xinquan
    BIOACTIVE MATERIALS, 2023, 25 : 239 - 255
  • [29] Fabrication of 3D printed hydroxyapatite/polymeric bone scaffold
    Jongprateep, Oratai
    Lertapiwong, Nuttapalin
    Chanyapoon, Piraya
    Htet, Thura Lin
    Asavaarunotai, Manasbodin
    Bansiddhi, Ampika
    Panomsuwan, Gasidit
    Inseemeesak, Benjaporn
    Lertworasirikul, Amornrat
    POLYMER-PLASTICS TECHNOLOGY AND MATERIALS, 2024, 63 (13): : 1780 - 1793
  • [30] 3D Printed Magnetic Bionic Robot Inspired by Octopus for Drug Transportation
    Chen, Feng
    Xu, Zhiqiang
    Chen, Kewen
    Wang, Xiaodong
    Jiang, Shengqiang
    SOFT ROBOTICS, 2024, 11 (06) : 1068 - 1077