FCM-SVM-RFE gene feature selection algorithm for leukemia classification from microarray gene expression data

被引:0
|
作者
Tang, YC [1 ]
Zhang, YQ [1 ]
Huang, Z [1 ]
机构
[1] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30302 USA
关键词
microarray gene expression data analysis; gene selection; support vector machines; recursive feature elimination; fuzzy C-means clustering; ACUTE MYELOID-LEUKEMIA; CANCER; TUMOR;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Selecting the most possibly cancer-related genes from huge microarray gene expression data is an important bioinformatics research topic due to its significance to improve human's understandability of the inherent cancer-resulting mechanism. This is actually a feature selection problem. The huge number of genes makes it impossible to execute an exhaustive search. In this work, we propose a Recursive Feature Elimination (RFE) algorithm named FCM-SVM-RFE for the gene selection task. In each step, similar genes are grouped into clusters by the Fuzzy C-Means clustering algorithm, and then a Support Vector Machine (SVM) is modeled in each cluster-induced space, the genes which contribute large to the margin width of the SVM are selected to survive to the next step. This process is repeated until a pre-specified number of genes are selected. FCM-SVM-RFE is compared with SVM-RFE on AML/ALL microarray gene expression data. The experimental results show that FCM-SVM-RFE is more accurate than SVM-RFE to predict the unknown samples. More importantly, FCM-SVM-RFE can find some compact subsets of genes on each of which a SVM with perfect prediction accuracy can be modeled. These "most informative genes" are very helpful for biologists to efficiently and effectively find the inherent cancer-resulting mechanism.
引用
收藏
页码:97 / 101
页数:5
相关论文
共 50 条
  • [1] Granular SVM-RFE gene selection algorithm for reliable prostate cancer classification on microarray expression data
    Tang, YC
    Zhang, YQ
    Huang, Z
    Hu, XH
    BIBE 2005: 5TH IEEE SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, 2005, : 290 - 293
  • [2] A variant of SVM-RFE for gene selection in cancer classification with expression data
    Duan, KB
    Rajapakse, JC
    PROCEEDINGS OF THE 2004 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2004, : 49 - 55
  • [3] Multiple SVM-RFE for gene selection in cancer classification with expression data
    Duan, KB
    Rajapakse, JC
    Wang, HY
    Azuaje, F
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2005, 4 (03) : 228 - 234
  • [4] A discrete bacterial algorithm for feature selection in classification of microarray gene expression cancer data
    Wang, Hong
    Jing, Xingjian
    Niu, Ben
    KNOWLEDGE-BASED SYSTEMS, 2017, 126 : 8 - 19
  • [5] Cancer Classification through Feature Selection and Transductive SVM Using Gene Microarray Data
    Chakraborty, Debasis
    Das, Shibu
    2012 THIRD INTERNATIONAL CONFERENCE ON EMERGING APPLICATIONS OF INFORMATION TECHNOLOGY (EAIT), 2012, : 77 - 80
  • [6] MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data
    Zhou, Xin
    Tuck, David P.
    BIOINFORMATICS, 2007, 23 (09) : 1106 - 1114
  • [7] Hybrid Feature Selection Algorithm mRMR-ICA for Cancer Classification from Microarray Gene Expression Data
    Wang, Shuaiqun
    Kong, Wei
    Aorigele
    Deng, Jin
    Gao, Shangce
    Zeng, Weiming
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2018, 21 (06) : 420 - 430
  • [8] A hybrid feature selection algorithm for gene expression data classification
    Lu, Huijuan
    Chen, Junying
    Yan, Ke
    Jin, Qun
    Xue, Yu
    Gao, Zhigang
    NEUROCOMPUTING, 2017, 256 : 56 - 62
  • [9] Gene ontology driven feature selection from microarray gene expression data
    Qi, Jianlong
    Tang, Jian
    PROCEEDINGS OF THE 2006 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2006, : 428 - +
  • [10] PSO based feature selection of gene for cancer classification using SVM-RFE
    Kavitha, K. R.
    Nair, Harishankar U.
    Akhil, M. C.
    2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2018, : 1012 - 1016