Highly Porous Gelatin Reinforced 3D Scaffolds for Articular Cartilage Regeneration

被引:27
|
作者
Amadori, Sofia [1 ]
Torricelli, Paola [2 ]
Panzavolta, Silvia [1 ]
Parrilli, Annapaola [2 ]
Fini, Milena [2 ]
Bigi, Adriana [1 ]
机构
[1] Univ Bologna, Dept Chem G Ciamician, I-40126 Bologna, Italy
[2] Rizzoli Orthopaed Inst, Res Inst Codivilla Putti, Lab Preclin & Surg Studies, I-40126 Bologna, Italy
关键词
cartilage regeneration; chondrocyte culture; gelatin scaffolds; high-resolution micro-CT; mechanical characterization; COLLAGEN SCAFFOLDS; PORE-SIZE; TISSUE; DIFFERENTIATION;
D O I
10.1002/mabi.201500014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
3D highly porous (93% total porosity) gelatin scaffolds were prepared according to a novel, simple method, which implies gelatin foaming, gelification, soaking into ethanol and successive freeze-drying. Reinforcement of the as-prepared scaffolds (GEL) was performed through immersion in aqueous solutions at different gelatin concentrations. Reinforcement solutions with and without genipin addition allowed to prepare two series of samples: cross-linked and uncross-linked samples, respectively. The amount of gelatin adsorbed onto the reinforced samples increases as a function of gelatin concentration in solution and provokes a drastic improvement of the compressive modulus and collapse strength up to values of about 30 and 4 MPa, respectively. The open and interconnected porosity, although slightly reduced, is still of the order of 80% in the samples reinforced with the highest concentration of gelatin. Water uptake ability evaluated after immersion in PBS for 20 s decreases with gelatin reinforcement. The presence of genipin in cross-linked samples reduces gelatin release and stabilizes the scaffolds in solution. Chondrocytes from human articular cartilage adhere, proliferate, and penetrate into the scaffolds. The evaluation of differentiation markers both on the supernatants of cell culture and by means of quantitative polymerase chain reaction (qPCR) indicates a dose-dependent promotion of cell differentiation.
引用
收藏
页码:941 / 952
页数:12
相关论文
共 50 条
  • [1] 3D printed gelatin-genipin scaffolds for temporomandibular joint cartilage regeneration
    Helgeland, Espen
    Mohamed-Ahmed, Samih
    Shanbhag, Siddharth
    Pedersen, Torbjorn O.
    Rosen, Annika
    Mustafa, Kamal
    Rashad, Ahmad
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2021, 7 (05):
  • [2] Dual-crosslinked 3D printed gelatin scaffolds with potential for temporomandibular joint cartilage regeneration
    Helgeland, Espen
    Rashad, Ahmad
    Campodoni, Elisabetta
    Goksoyr, Oyvind
    Pedersen, Torbjorn ostvik
    Sandri, Monica
    Rosen, Annika
    Mustafa, Kamal
    BIOMEDICAL MATERIALS, 2021, 16 (03)
  • [3] Chondroitin sulfate modified 3D porous electrospun nanofiber scaffolds promote cartilage regeneration
    Chen, Shuai
    Chen, Weiming
    Chen, Yini
    Mo, Xiumei
    Fan, Cunyi
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 118
  • [4] Research advance of 3D printing for articular cartilage regeneration
    Tao, Haicheng
    Feng, Mingli
    Feng, Hui
    Ren, Hongchen
    REGENERATIVE MEDICINE, 2025, 20 (01) : 45 - 55
  • [5] 3D printed hydrogel for articular cartilage regeneration
    Yang, Xue
    Li, Shuai
    Ren, Ya
    Qiang, Lei
    Liu, Yihao
    Wang, Jinwu
    Dai, Kerong
    COMPOSITES PART B-ENGINEERING, 2022, 237
  • [6] 3D printed silk-gelatin hydrogel scaffold with different porous structure and cell seeding strategy for cartilage regeneration
    Li, Qingtao
    Xu, Sheng
    Feng, Qi
    Dai, Qiyuan
    Yao, Longtao
    Zhang, Yichen
    Gao, Huichang
    Dong, Hua
    Chen, Dafu
    Cao, Xiaodong
    BIOACTIVE MATERIALS, 2021, 6 (10) : 3396 - 3410
  • [7] Highly porous 3D nanofibrous scaffolds processed with an electrospinning/laser process
    Kim, Min Seong
    Son, JoonGon
    Lee, HyeongJin
    Hwang, Heon
    Choi, Chang Hyun
    Kim, GeunHyung
    CURRENT APPLIED PHYSICS, 2014, 14 (01) : 1 - 7
  • [8] 3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation
    Smeriglio, Piera
    Lai, Janice H.
    Yang, Fan
    Bhutani, Nidhi
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2015, (104):
  • [9] 3D printed cell-laden collagen and hybrid scaffolds for in vivo articular cartilage tissue regeneration
    Koo, YoungWon
    Choi, Eun-Ji
    Lee, JaeYoon
    Kim, Han-Jun
    Kim, GeunHyung
    Do, Sun Hee
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2018, 66 : 343 - 355
  • [10] Regeneration of Articular Cartilage Using Membranes of Polyester Scaffolds in a Rabbit Model
    Baranowski, Maciej
    Wasyleczko, Monika
    Kosowska, Anna
    Plichta, Andrzej
    Kowalczyk, Sebastian
    Chwojnowski, Andrzej
    Bielecki, Wojciech
    Czubak, Jaroslaw
    PHARMACEUTICS, 2022, 14 (05)