In vivo assessment of lumbar vertebral strength in elderly women using computed tomography-based nonlinear finite element model

被引:63
作者
Imai, Kazuhiro [1 ,2 ]
Ohnishi, Isao [1 ]
Yamamoto, Seizo [2 ]
Nakamura, Kozo [1 ]
机构
[1] Univ Tokyo, Sch Med, Dept Orthopaed Surg, Bunkyo Ku, Tokyo 1130033, Japan
[2] Tokyo Metropolitan Geriatr Med Ctr, Dept Orthopaed Surg, Itabashi Ku, Tokyo, Japan
关键词
vertebral strength; osteoporosis; finite element model; elderly women; in vivo assessment;
D O I
10.1097/BRS.0b013e31815e3993
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Study Design. In vivo study of a computed tomography (CT)-based nonlinear finite element model (FEM). Objective. To establish an FEM with the optimum element size to assess the vertebral strength by comparing analyzed data with those obtained from mechanical testing in vitro, and then to assess the second lumbar (L2) vertebral strength in vivo. Summary of Background Data. FEM has been reported to predict vertebral strength in vitro, but has not been used clinically. Methods. Comparison among the 3 models with a different element size of 1 mm, 2 mm, and 3 mm was performed to determine which model achieved the most accurate prediction. Vertebral strength was assessed in 78 elderly Japanese women using an FEM with the optimum element size. Results. The optimum element size was 2 mm. The L2 vertebral strength obtained with the FEM was 2154 +/- 685 N, and the model could detect preexisting vertebral fracture better than measurement of bone mineral density. Conclusion. The FEM could assess vertebral strength in vivo.
引用
收藏
页码:27 / 32
页数:6
相关论文
共 29 条
[1]   Anteroposterior and lateral spinal DXA for the assessment of vertebral body strength: Comparison with hip and forearm measurement [J].
Bjarnason, K ;
Hassager, C ;
Svendsen, OL ;
Christiansen, C .
OSTEOPOROSIS INTERNATIONAL, 1996, 6 (01) :37-42
[2]  
Brinckmann P., 1989, CLIN BIOMECH, V4, P1
[3]  
CHENG XG, 1997, J BONE MINER RES, V12, P721
[4]   Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography [J].
Crawford, RP ;
Cann, CE ;
Keaveny, TM .
BONE, 2003, 33 (04) :744-750
[5]   Quantitative computed tomography-based finite element models of the human lumbar vertebral body: Effect of element size on stiffness, damage, and fracture strength predictions [J].
Crawford, RP ;
Rosenberg, WS ;
Keaveny, TM .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2003, 125 (04) :434-438
[6]   Measurement of thickness and density of thin structures by computed tomography: A simulation study [J].
Dougherty, G ;
Newman, D .
MEDICAL PHYSICS, 1999, 26 (07) :1341-1348
[7]   Bone strength at clinically relevant sites displays substantial heterogeneity and is best predicted from site-specific bone densitometry [J].
Eckstein, F ;
Lochmüller, EM ;
Lill, CA ;
Kuhn, V ;
Schneider, E ;
Delling, G ;
Müller, R .
JOURNAL OF BONE AND MINERAL RESEARCH, 2002, 17 (01) :162-171
[8]   IN-VITRO RELATIONSHIPS BETWEEN VERTEBRAL BODY DENSITY, SIZE, AND COMPRESSIVE STRENGTH IN THE ELDERLY THORACOLUMBAR SPINE [J].
EDMONDSTON, SJ ;
SINGER, KP ;
DAY, RE ;
BREIDAHL, PD ;
PRICE, RI .
CLINICAL BIOMECHANICS, 1994, 9 (03) :180-186
[9]   PREDICTION OF VERTEBRAL STRENGTH BY DUAL PHOTON-ABSORPTIOMETRY AND QUANTITATIVE COMPUTED-TOMOGRAPHY [J].
ERIKSSON, SAV ;
ISBERG, BO ;
LINDGREN, JU .
CALCIFIED TISSUE INTERNATIONAL, 1989, 44 (04) :243-250
[10]   EFFECT OF BONE DISTRIBUTION ON VERTEBRAL STRENGTH - ASSESSMENT WITH PATIENT-SPECIFIC NONLINEAR FINITE-ELEMENT ANALYSIS [J].
FAULKNER, KG ;
CANN, CE ;
HASEGAWA, BH .
RADIOLOGY, 1991, 179 (03) :669-674