The Ramsey numbers R(Cm, K7) and R(C7, K8)

被引:15
作者
Chen, Yaojun [1 ]
Cheng, T. C. Edwin [2 ]
Zhang, Yunqing [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Hong Kong Polytech Univ, Dept Logist, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.ejc.2007.05.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For two given graphs G(1) and G(2), the Ramsey number R(G(1), G(2)) is the smallest integer it such that for any graph G of order n, either G contains G(1) or the complement of G contains G(2). Let C-m denote a cycle of length in and K-n a complete graph of order n. In this paper we show that R(C-m, K-7) = 6m - 5 for m >= 7 and R(C-7, K-8) = 43, with the former result confirming a conjecture due to Erdos, Faudree, Rousseau and Schelp, that R(C,,,, Kn) = (m - 1)(n - 1) + 1 for m >= n >= 3 and (m, n) not equal (3, 3) in the case where n = 7. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1337 / 1352
页数:16
相关论文
共 11 条
[1]  
Bollobas B. C. J., 2000, AUSTRALAS J COMBIN, V22, P63
[2]  
Bondy J.A., 2008, GRAD TEXTS MATH
[3]   The Ramsey numbers for a cycle of length six or seven versus a clique of order seven [J].
Cheng, T. C. Edwin ;
Chen, Yaojun ;
Zhang, Yunqing ;
Ng, C. T. .
DISCRETE MATHEMATICS, 2007, 307 (9-10) :1047-1053
[4]  
Chvatal V., 1972, DISCRETE MATH, V2, P111, DOI DOI 10.1016/0012-365X(72)90079-9
[5]  
Faudree R. J., 1974, Discrete Mathematics, V8, P313, DOI 10.1016/0012-365X(74)90151-4
[6]  
Ore O., 1960, AM MATH MONTHLY, V67, P55, DOI [10.2307/2308928, DOI 10.2307/2308928]
[7]  
RADZISZOWSKI SP, 2006, ELECTRON J COMB, DOI UNSP DS1.11
[8]  
Rosta V., 1973, Journal of Combinatorial Theory, Series B, V15, P94, DOI 10.1016/0095-8956(73)90035-X
[9]   All cycle-complete graph Ramsey numbers r(Cm, K6) [J].
Schiermeyer, I .
JOURNAL OF GRAPH THEORY, 2003, 44 (04) :251-260
[10]  
Yang WY, 1999, APPL MATH MECH-ENGL, V20, P205