The numerical range of products of normal matrices

被引:1
|
作者
Drury, SW [1 ]
机构
[1] McGill Univ, Dept Math & Stat, W Montreal, PQ H3A 2K6, Canada
关键词
trace class multiplier; Schur multiplier; spectral distance; numerical range; normal matrix;
D O I
10.1016/S0024-3795(98)10224-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In an earlier paper, the author developed a formula for the trace class multiplier norm of a matrix of rank at most 2. In this article, applications of this formula are given. In the main result we suppose that f(1),...,f(n) and g(1),...,g(n) are given sets of complex numbers. A description is given of the union of the numerical ranges of the product FG as F and G run over all nxn normal matrices with the given sets as eigenvalues. (C) 1999 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:283 / 292
页数:10
相关论文
共 50 条
  • [1] A new perspective on the quaternionic numerical range of normal matrices
    Carvalho, Luis
    Diogo, Cristina
    Mendes, Sergio
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20) : 5068 - 5074
  • [2] Numerical range for random matrices
    Collins, Benoit
    Gawron, Piotr
    Litvak, Alexander E.
    Zyczkowski, Karol
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 418 (01) : 516 - 533
  • [3] ON THE NUMERICAL RANGE OF EP MATRICES
    Pappas, Dimitrios
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (04): : 1079 - 1089
  • [4] Numerical range and product of matrices
    Alizadeh, R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (06) : 1422 - 1425
  • [5] On EP matrices, partial isometry matrices and their numerical range
    Aghamollaei, Gholamreza
    Mortezaei, Mahdiyeh
    Nourollahi, Mohammad Ali
    QUAESTIONES MATHEMATICAE, 2024, 47 (03) : 537 - 550
  • [6] A note on numerical range and product of matrices
    Cheng, Che-Man
    Gao, Yuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (07) : 3139 - 3143
  • [7] NUMERICAL RANGE AND POSITIVE BLOCK MATRICES
    Bourin, Jean-Christophe
    Lee, Eun-Young
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 103 (01) : 69 - 77
  • [8] ON THE MAXIMAL NUMERICAL RANGE OF SOME MATRICES
    Hamed, Ali N.
    Spitkovsky, Ilya M.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 34 : 288 - 303
  • [9] A definition of numerical range of rectangular matrices
    Chorianopoulos, Ch
    Karanasios, S.
    Psarrakos, P.
    LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (05) : 459 - 475
  • [10] Quaternionic numerical range of complex matrices
    Carvalho, Luis
    Diogo, Cristina
    Mendes, Sergio
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 620 : 168 - 181