Global large solutions of magnetohydrodynamics with temperature-dependent heat conductivity

被引:30
作者
Hu, Yuxi [1 ]
Ju, Qiangchang [1 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2015年 / 66卷 / 03期
关键词
Magnetohydrodynamics; Temperature-dependent heat conductivity; Large data; Global strong solutions; NON-LINEAR THERMOVISCOELASTICITY; RAYLEIGH-TAYLOR INSTABILITY; BOUNDARY VALUE-PROBLEM; EQUATIONS;
D O I
10.1007/s00033-014-0446-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider an initial boundary value problem for the magnetohydrodynamic compressible flows. By assuming that the heat conductivity depends on temperature with kappa (theta) = theta (q) , q > 0, we prove the existence and uniqueness of global strong solutions with large initial data and show that neither shock waves nor vacuum and concentration of mass in the solutions are developed in a finite time.
引用
收藏
页码:865 / 889
页数:25
相关论文
共 21 条
[1]  
CABANNES H., 1970, Theoretical Magnetofluiddynamics
[2]   Existence and continuous dependence of large solutions for the magnetohydrodynamic equations [J].
Chen, GQ ;
Wang, DH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (04) :608-632
[3]   Global solutions of nonlinear magnetohydrodynamics with large initial data [J].
Chen, GQ ;
Wang, DH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 182 (02) :344-376
[5]   GLOBAL SMOOTH THERMOMECHANICAL PROCESSES IN ONE-DIMENSIONAL NON-LINEAR THERMOVISCOELASTICITY [J].
DAFERMOS, CM ;
HSIAO, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (05) :435-454
[6]   ON THE RAYLEIGH-TAYLOR INSTABILITY FOR INCOMPRESSIBLE, INVISCID MAGNETOHYDRODYNAMIC FLOWS [J].
Duan, Ran ;
Jiang, Fei ;
Jiang, Song .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (06) :1990-2013
[7]  
Fan J., 2013, PREPRINT
[8]   Vanishing shear viscosity limit in the magnetohydrodynamic equations [J].
Fan, Jishan ;
Jiang, Song ;
Nakamura, Gen .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (03) :691-708
[9]   Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics [J].
Hoff, D ;
Tsyganov, E .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2005, 56 (05) :791-804
[10]  
Jeffrey A., 1964, NONLINEAR WAVE PROPA