FeOOH-enhanced bifunctionality in Ni3N nanotube arrays for water splitting

被引:175
作者
Guan, Jielun [1 ]
Li, Chengfei [2 ]
Zhao, Jiawei [2 ]
Yang, Yanzhang [2 ]
Zhou, Wen [2 ]
Wang, Yi [1 ]
Li, Gao-Ren [2 ]
机构
[1] Sun Yat Sen Univ, Sch Chem Engn & Technol, Key Lab Low Carbon Chem & Energy Conservat Guangd, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, MOE Lab Bioinorgan & Synthet Chem, Sch Chem, Guangzhou 510275, Peoples R China
关键词
FeOOH/Ni3N; Synergistic effect; Bifunctionality; OER/HER; OXYGEN EVOLUTION; METAL NITRIDES; EFFICIENT; NANOSHEETS; ELECTROCATALYSTS; CATALYSTS; DESIGN; CARBON; PHOSPHIDES; STABILITY;
D O I
10.1016/j.apcatb.2020.118600
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Here we report the functional FeOOH as a cocatalyst to enhance excellent bifunctionality of the Ni3N catalyst, which demonstrate remarkable electrocatalytic activity for hydrogen evolution reaction (HER) and oxygen evolution reduction (OER) compared to the pristine Ni 3 N sample. Experimental data and theoretical calcinations demonstrate that the FeOOH facilitates surface adsorption and cleavage of OH-/H2O species and decrease the d-band center of active Ni species for optimizing the Gibbs free energy of intermediates. Furthermore, relatively vertical Ni3N nanotubes can promote the mass transport and electrons transfer as a main catalyst. The unusual synergistic effect in hybrid system with high density of heterointerface is contributed to the improvement of HER/OER catalytic performance. Specifically, the obtained FeOOH/Ni3N hybrid catalysts display excellent OER/HER performance with an overpotential of 244 mV/67 mV at 10 mA cm(-2) in 1.0 M KOH, along with an applied potential of 1.58 V to boost overall water splitting at 10 mA cm(-2). This simple and effective strategy may provide a new path to design the bifunctional catalysts and improve the catalytic performance for water splitting.
引用
收藏
页数:8
相关论文
共 52 条
  • [1] Advances on waste valorization: new horizons for a more sustainable society
    Arancon, Rick Arneil D.
    Lin, Carol Sze Ki
    Chan, King Ming
    Kwan, Tsz Him
    Luque, Rafael
    [J]. ENERGY SCIENCE & ENGINEERING, 2013, 1 (02): : 53 - 71
  • [2] The future of energy supply: Challenges and opportunities
    Armaroli, Nicola
    Balzani, Vincenzo
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (1-2) : 52 - 66
  • [3] Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting
    Chemelewski, William D.
    Lee, Heung-Chan
    Lin, Jung-Fu
    Bard, Allen J.
    Mullins, C. Buddie
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (07) : 2843 - 2850
  • [4] Three-Dimensional Smart Catalyst Electrode for Oxygen Evolution Reaction
    Chen, Sheng
    Duan, Jingjing
    Bian, Pengju
    Tang, Youhong
    Zheng, Rongkun
    Qiao, Shi-Zhang
    [J]. ADVANCED ENERGY MATERIALS, 2015, 5 (18)
  • [5] Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability
    Cherevko, Serhiy
    Geiger, Simon
    Kasian, Olga
    Kulyk, Nadiia
    Grote, Jan-Philipp
    Savan, Alan
    Shrestha, Buddha Ratna
    Merzlikin, Sergiy
    Breitbach, Benjamin
    Ludwig, Alfred
    Mayrhofer, Karl J. J.
    [J]. CATALYSIS TODAY, 2016, 262 : 170 - 180
  • [6] Crowley J.K., 2003, GEOCHEMISTRY-GERMANY, V3, P219, DOI [DOI 10.1144/1467-7873/03-001, 10]
  • [7] Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation
    Cui, Xiaoju
    Ren, Pengju
    Deng, Dehui
    Deng, Jiao
    Bao, Xinhe
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (01) : 123 - 129
  • [8] deFaria DLA, 1997, J RAMAN SPECTROSC, V28, P873, DOI 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO
  • [9] 2-B
  • [10] Two-step synthesis of binary Ni-Fe sulfides supported on nickel foam as highly efficient electrocatalysts for the oxygen evolution reaction
    Dong, Bin
    Zhao, Xin
    Han, Guan-Qun
    Li, Xiao
    Shang, Xiao
    Liu, Yan-Ru
    Hu, Wen-Hui
    Chai, Yong-Ming
    Zhao, Hui
    Liu, Chen-Guang
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (35) : 13499 - 13508