Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose

被引:46
作者
Oh, Eun Joong [1 ]
Jin, Yong-Su [2 ,3 ,4 ]
机构
[1] Univ Colorado, RASEI, 4001 Discovery Dr, Boulder, CO 80303 USA
[2] Dept Food Sci & Human Nutr, 905 S Goodwin Ave, Urbana, IL 61801 USA
[3] 1105 Carl R Woese Inst Genom Biol, 1206 W Gregory Dr, Urbana, IL 61801 USA
[4] Univ Illinois, DOE Ctr Adv Bioenergy & Bioprod Innovat, 1206 W Gregory Dr, Urbana, IL 61801 USA
关键词
Saccharomyces cerevisiae; lignocellulosic biomass; biofuel; YIELD ETHANOL-PRODUCTION; ACETIC-ACID TOLERANCE; CELL-SURFACE; SIMULTANEOUS SACCHARIFICATION; CELLOBIOSE FERMENTATION; CO-FERMENTATION; YEAST-STRAIN; CRYSTALLINE CELLULOSE; AMORPHOUS CELLULOSE; BETA-GLUCOSIDASES;
D O I
10.1093/femsyr/foz089
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Conversion of lignocellulosic biomass to biofuels using microbial fermentation is an attractive option to substitute petroleum-based production economically and sustainably. The substantial efforts to design yeast strains for biomass hydrolysis have led to industrially applicable biological routes. Saccharomyces cerevisiae is a robust microbial platform widely used in biofuel production, based on its amenability to systems and synthetic biology tools. The critical challenges for the efficient microbial conversion of lignocellulosic biomass by engineered S. cerevisiae include heterologous expression of cellulolytic enzymes, co-fermentation of hexose and pentose sugars, and robustness against various stresses. Scientists developed many engineering strategies for cellulolytic S. cerevisiae strains, bringing the application of consolidated bioprocess at an industrial scale. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose will be reviewed.
引用
收藏
页数:11
相关论文
共 88 条
  • [1] Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae
    Aeling, Kimberly A.
    Salmon, Kirsty A.
    Laplaza, Jose M.
    Li, Ling
    Headman, Jennifer R.
    Hutagalung, Alex H.
    Picataggio, Stephen
    [J]. JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2012, 39 (11) : 1597 - 1604
  • [2] Evolutionary Engineering of Saccharomyces cerevisiae for Enhanced Tolerance to Hydrolysates of Lignocellulosic Biomass
    Almario, Maria P.
    Reyes, Luis H.
    Kao, Katy C.
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2013, 110 (10) : 2616 - 2623
  • [3] Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae
    Almeida, Jodo R. M.
    Modig, Tobias
    Petersson, Anneli
    Hahn-Hagerdal, Barbel
    Liden, Gunnar
    Gorwa-Grauslund, Marie F.
    [J]. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2007, 82 (04) : 340 - 349
  • [4] Proximity Effect among Cellulose-Degrading Enzymes Displayed on the Saccharomyces cerevisiae
    Bae, Jungu
    Kuroda, Kouichi
    Ueda, Mitsuyoshi
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2015, 81 (01) : 59 - 66
  • [5] Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae
    Bae, Yi-Hyun
    Kang, Kyeong-Hyeon
    Jin, Yong-Su
    Seo, Jin-Ho
    [J]. JOURNAL OF BIOTECHNOLOGY, 2014, 169 : 34 - 41
  • [6] The cellulosomes: Multienzyme machines for degradation of plant cell wall polysaccharides
    Bayer, EA
    Belaich, JP
    Shoham, Y
    Lamed, R
    [J]. ANNUAL REVIEW OF MICROBIOLOGY, 2004, 58 : 521 - 554
  • [7] Comparative kinetic analysis of two fungal β-glucosidases
    Chauve, Marie
    Mathis, Hugues
    Huc, Delphine
    Casanave, Dominique
    Monot, Frederic
    Lopes Ferreira, Nicolas
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2010, 3
  • [8] Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering
    Chen, Yingying
    Stabryla, Lisa
    Wei, Na
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2016, 82 (07) : 2156 - 2166
  • [9] Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae
    Chen, Yingying
    Sheng, Jiayuan
    Jiang, Tao
    Stevens, Joseph
    Feng, Xueyang
    Wei, Na
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2016, 9
  • [10] Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Saccharomyces cerevisiae
    Chomvong, Kulika
    Benjamin, Daniel I.
    Nomura, Daniel K.
    Cate, Jamie H. D.
    [J]. MBIO, 2017, 8 (04):