DCE-MRI radiomics features for predicting breast cancer neoadjuvant therapy response

被引:0
作者
Kontopodis, E. [1 ,2 ]
Manikis, G. C. [1 ,2 ]
Skepasianos, I. [1 ,3 ]
Tzagkarakis, K. [1 ,3 ]
Nikiforaki, K. [1 ,2 ]
Papadakis, G. Z. [1 ,2 ]
Maris, T. G. [2 ]
Papadaki, E. [1 ,2 ]
Karantanas, A. [1 ,2 ]
Marias, K. [1 ,3 ]
机构
[1] Fdn Res & Technol Hellas, Inst Comp Sci, Computat Biomed Lab, Iraklion, Greece
[2] Univ Crete, Med Sch, Dept Radiol, Iraklion, Greece
[3] Technol Educ Inst Crete, Dept Informat Engn, Iraklion, Crete, Greece
来源
2018 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST) | 2018年
关键词
DCE; quantitative MRI; radiomics; texture analysis; breast cancer; PATHOLOGICAL COMPLETE RESPONSE; PRETREATMENT PREDICTION; TEXTURE ANALYSIS; CHEMOTHERAPY;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Quantitative MRI plays a central role in the precision management of cancer. Regarding breast cancer (BRCA) patients, DCE-MRI imaging biomarkers (IBs) have shown promising results both in clinical trials and clinical practice. The advancements in the field of radiomics offer more opportunities for defining disease-specific imaging biomarkers for screening, diagnosis and therapy assessment. In this paper we present a study investigating the role of radiomics in predicting breast-cancer therapy response in the neoadjuvant setting. A temporal radiomics approach is proposed for predicting breast cancer therapy response in the neoadjuvant setting on a public cohort of 35 patients with histologically-proven breast cancer of stage II/III with DCE-MRI data available before treatment, after the first cycle and before the end of treatment. The results based on 57 radiomics features indicate that neoadjuvant chemotherapy (NAC) treatment outcome can be predicted both at baseline and right after the first NAC cycle. Our analyses, found that the best predictors were the median and size-zone non-uniformity normalized calculated from the wavelet decomposition of level 2 of the baseline and the first follow-up exam, achieving an AUROC of 80.80% and 81.34% respectively. These encouraging preliminary results call for more relevant research investigating the role of temporal radiomics in predicting NAC outcome towards more personalized therapy planning.
引用
收藏
页码:203 / 208
页数:6
相关论文
共 25 条
  • [21] Baseline Tumor Oxygen Saturation Correlates with a Pathologic Complete Response in Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy
    Ueda, Shigeto
    Roblyer, Darren
    Cerussi, Albert
    Durkin, Amanda
    Leproux, Anais
    Santoro, Ylenia
    Xu, Shanshan
    O'Sullivan, Thomas D.
    Hsiang, David
    Mehta, Rita
    Butler, John
    Tromberg, Bruce J.
    [J]. CANCER RESEARCH, 2012, 72 (17) : 4318 - 4328
  • [22] Neoadjuvant chemotherapy for breast cancer: correlation between the baseline MR imaging findings and responses to therapy
    Uematsu, Takayoshi
    Kasami, Masako
    Yuen, Sachiko
    [J]. EUROPEAN RADIOLOGY, 2010, 20 (10) : 2315 - 2322
  • [23] Computational Radiomics System to Decode the Radiographic Phenotype
    van Griethuysen, Joost J. M.
    Fedorov, Andriy
    Parmar, Chintan
    Hosny, Ahmed
    Aucoin, Nicole
    Narayan, Vivek
    Beets-Tan, Regina G. H.
    Fillion-Robin, Jean-Christophe
    Pieper, Steve
    Aerts, Hugo J. W. L.
    [J]. CANCER RESEARCH, 2017, 77 (21) : E104 - E107
  • [24] Intratumor partitioning and texture analysis of dynamic contrast-enhanced (DCE)-MRI identifies relevant tumor subregions to predict pathological response of breast cancer to neoadjuvant chemotherapy
    Wu, Jia
    Gong, Guanghua
    Cui, Yi
    Li, Ruijiang
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2016, 44 (05) : 1107 - 1115
  • [25] Robust Intratumor Partitioning to Identify High-Risk Subregions in Lung Cancer: A Pilot Study
    Wu, Jia
    Gensheimer, Michael F.
    Dong, Xinzhe
    Rubin, Daniel L.
    Napel, Sandy
    Diehn, Maximilian
    Loo, Billy W., Jr.
    Li, Ruijiang
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 95 (05): : 1504 - 1512