Lorentz cone;
Second-order cone eigenvalue complementarity problem;
Semismooth Newton method;
Lattice Projection Method;
UNILATERAL CONTACT;
ELASTIC-SYSTEMS;
NEWTON METHODS;
STABILITY;
OPTIMIZATION;
D O I:
10.1007/s10957-014-0645-0
中图分类号:
C93 [管理学];
O22 [运筹学];
学科分类号:
070105 ;
12 ;
1201 ;
1202 ;
120202 ;
摘要:
In this paper, we study numerical methods for solving eigenvalue complementarity problems involving the product of second-order cones (or Lorentz cones). We reformulate such problem to find the roots of a semismooth function. An extension of the Lattice Projection Method (LPM) to solve the second-order cone eigenvalue complementarity problem is proposed. The LPMis compared to the semismooth-Newton methods, associated to the Fischer-Burmeister and the natural residual functions. The performance profiles highlight the efficiency of the LPM. A globalization of these methods, based on the smoothing and regularization approaches, are discussed.