A New Method for Solving Second-Order Cone Eigenvalue Complementarity Problems

被引:21
作者
Adly, Samir [1 ]
Rammal, Hadia [1 ]
机构
[1] Univ Limoges, CNRS, XLIM UMR 7252, F-87060 Limoges, France
关键词
Lorentz cone; Second-order cone eigenvalue complementarity problem; Semismooth Newton method; Lattice Projection Method; UNILATERAL CONTACT; ELASTIC-SYSTEMS; NEWTON METHODS; STABILITY; OPTIMIZATION;
D O I
10.1007/s10957-014-0645-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study numerical methods for solving eigenvalue complementarity problems involving the product of second-order cones (or Lorentz cones). We reformulate such problem to find the roots of a semismooth function. An extension of the Lattice Projection Method (LPM) to solve the second-order cone eigenvalue complementarity problem is proposed. The LPMis compared to the semismooth-Newton methods, associated to the Fischer-Burmeister and the natural residual functions. The performance profiles highlight the efficiency of the LPM. A globalization of these methods, based on the smoothing and regularization approaches, are discussed.
引用
收藏
页码:563 / 585
页数:23
相关论文
共 39 条
[1]   A new method for solving Pareto eigenvalue complementarity problems [J].
Adly, Samir ;
Rammal, Hadia .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 55 (03) :703-731
[2]   A nonsmooth algorithm for cone-constrained eigenvalue problems [J].
Adly, Samir ;
Seeger, Alberto .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 49 (02) :299-318
[3]   Second-order cone programming [J].
Alizadeh, F ;
Goldfarb, D .
MATHEMATICAL PROGRAMMING, 2003, 95 (01) :3-51
[4]   Perturbation analysis of second-order cone programming problems [J].
Bonnans, JF ;
Ramírez, CH .
MATHEMATICAL PROGRAMMING, 2005, 104 (2-3) :205-227
[5]  
Chen JS, 2005, J NONLINEAR CONVEX A, V6, P297
[6]   An unconstrained smooth minimization reformulation of the second-order cone complementarity problem [J].
Chen, JS ;
Tseng, P .
MATHEMATICAL PROGRAMMING, 2005, 104 (2-3) :293-327
[7]   Analysis of nonsmooth vector-valued functions associated with second-order cones [J].
Chen, JS ;
Chen, X ;
Tseng, P .
MATHEMATICAL PROGRAMMING, 2004, 101 (01) :95-117
[8]   Complementarity functions and numerical experiments on some smoothing newton methods for second-order-cone complementarity problems [J].
Chen, XD ;
Sun, D ;
Sun, J .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2003, 25 (1-3) :39-56
[9]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[10]   Cone-constrained eigenvalue problems: theory and algorithms [J].
da Costa, A. Pinto ;
Seeger, A. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 45 (01) :25-57