Restricted Diffusion in Cellular Media: (1+1)-Dimensional Model

被引:5
|
作者
Huang, Huaxiong [1 ,4 ]
Wylie, Jonathan J. [2 ,4 ]
Miura, Robert M. [3 ,4 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[3] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
[4] New Jersey Inst Technol, Ctr Appl Math & Stat, Newark, NJ 07102 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Restricted diffusion in cellular media with permeable membranes; Nuclear magnetic resonance imaging; CORTICAL SPREADING DEPRESSION; PERMEABLE MEMBRANES; TRAVELING-WAVES; NMR; BARRIERS; GRADIENT; SYSTEMS;
D O I
10.1007/s11538-010-9589-1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the diffusion of molecules in a one-dimensional medium consisting of a large number of cells separated from the extra-cellular space by permeable membranes. The extra-cellular space is completely connected and allows unrestricted diffusion of the molecules. Furthermore, the molecules can diffuse within a given cell, i.e., the intra-cellular space; however, direct diffusion from one cell to another cell cannot occur. There is a movement of molecules across the permeable membranes between the intra- and extra-cellular spaces. Molecules from one cell can cross the permeable membrane into the extra-cellular space, then diffuse through the extra-cellular space, and eventually enter the intra-cellular space of a second cell. Here, we develop a simple set of model equations to describe this phenomenon and obtain the solutions using an eigenfunction expansion. We show that the solutions obtained using this method are particularly convenient for interpreting data from experiments that use techniques from nuclear magnetic resonance imaging.
引用
收藏
页码:1682 / 1694
页数:13
相关论文
共 50 条
  • [1] Restricted Diffusion in Cellular Media: (1+1)-Dimensional Model
    Huaxiong Huang
    Jonathan J. Wylie
    Robert M. Miura
    Bulletin of Mathematical Biology, 2011, 73 : 1682 - 1694
  • [2] SPECTRAL FLOW IN A (1+1)-DIMENSIONAL MODEL
    KEIL, W
    KOBES, R
    PHYSICAL REVIEW D, 1985, 32 (08): : 2231 - 2234
  • [3] (11112) model on a (1+1)-dimensional lattice
    Xue, SS
    PHYSICAL REVIEW D, 2001, 64 (09)
  • [4] A (1+1)-dimensional reduced model of mesons
    Antonuccio, F
    Dalley, S
    PHYSICS LETTERS B, 1996, 376 (1-3) : 154 - 162
  • [5] Kink interactions in the (1+1)-dimensional φ6 model
    Gani, Vakhid A.
    Kudryavtsev, Alexander E.
    Lizunova, Mariya A.
    PHYSICAL REVIEW D, 2014, 89 (12):
  • [6] GLUEBALL SPECTRUM IN A (1+1)-DIMENSIONAL MODEL FOR QCD
    DEMETERFI, K
    KLEBANOV, IR
    BHANOT, G
    NUCLEAR PHYSICS B, 1994, 418 (1-2) : 15 - 29
  • [7] The (1+1)-dimensional spatial solitons in media with weak nonlinear nonlocality
    Ding Na
    Guo Qi
    CHINESE PHYSICS B, 2009, 18 (10) : 4298 - 4302
  • [8] The (1+1)-dimensional spatial solitons in media with weak nonlinear nonlocality
    丁娜
    郭旗
    Chinese Physics B, 2009, 18 (10) : 4298 - 4302
  • [9] Solution for (1+1)-dimensional surface solitons in thermal nonlinear media
    Ma, Xuekai
    Yang, Zhenjun
    Lu, Daquan
    Guo, Qi
    Hu, Wei
    PHYSICAL REVIEW A, 2011, 83 (03):
  • [10] Relaxation properties of (1+1)-dimensional driven interfaces in disordered media
    Díaz-Sánchez, A
    Pérez-Garrido, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (41): : 9621 - 9630