Distributed Primal-Dual Method for Convex Optimization With Coupled Constraints

被引:14
|
作者
Su, Yanxu [1 ]
Wang, Qingling [2 ,3 ]
Sun, Changyin [2 ,3 ]
机构
[1] Anhui Univ, Sch Artificial Intelligence, Hefei 230039, Peoples R China
[2] Southeast Univ, Sch Automat, Nanjing 210096, Peoples R China
[3] Southeast Univ, Minist Educ, Key Lab Measurement & Control Complex Syst Engn, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Primal-dual algorithm; consensus; distributed constrained optimization; non-ergodic convergence rate; LINEAR CONVERGENCE; CONSENSUS; ALGORITHMS;
D O I
10.1109/TSP.2021.3123888
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Distributed primal-dual methods have been widely used for solving large-scale constrained optimization problems. The majority of existing results focus on the problems with decoupled constraints. Some recent works have studied the problems subject to separable globally coupled constraints. This paper considers the distributed optimization problems with globally coupled constraints over networks without requiring the separability of the globally coupled constraints. This is made possible by the local estimates of the constraint violations. For solving such a problem, we propose a primal-dual algorithm in the augmented Lagrangian framework, combining the average consensus technique. We first establish a non-ergodic convergence rate of O(1/k) in terms of the objective residual for solving a distributed constrained convex optimization problem, where k is the iteration counter. Specifically, the global objective function is the aggregate of the local convex and possibly non-smooth costs, and the coupled constraint is the sum of the local linear equality constraints. The numerical results illustrate the performance of the proposed method.
引用
收藏
页码:523 / 535
页数:13
相关论文
共 50 条
  • [11] Primal-dual exterior point method for convex optimization
    Polyak, Roman A.
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (01): : 141 - 160
  • [12] A Distributed Proximal-Based Primal-Dual Algorithm for Composite Optimization with Coupled Constraints
    Wang, Yifan
    Liu, Shuai
    2022 IEEE 17TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION, ICCA, 2022, : 801 - 806
  • [13] A Primal-Dual Algorithm for Distributed Stochastic Optimization with Equality Constraints
    Du, Kai-Xin
    Chen, Xing-Min
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 5586 - 5591
  • [14] Distributed Optimization Using the Primal-Dual Method of Multipliers
    Zhang, Guoqiang
    Heusdens, Richard
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2018, 4 (01): : 173 - 187
  • [15] Accelerated Primal-Dual Algorithm for Distributed Non-convex Optimization
    Zhang, Shengjun
    Bailey, Colleen P.
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [16] Projected Primal-Dual Dynamics for Distributed Constrained Nonsmooth Convex Optimization
    Zhu, Yanan
    Yu, Wenwu
    Wen, Guanghui
    Chen, Guanrong
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (04) : 1776 - 1782
  • [17] A Universal Accelerated Primal-Dual Method for Convex Optimization Problems
    Luo, Hao
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 201 (01) : 280 - 312
  • [18] Primal-dual subgradient method for constrained convex optimization problems
    Metel, Michael R.
    Takeda, Akiko
    OPTIMIZATION LETTERS, 2021, 15 (04) : 1491 - 1504
  • [19] Parallel Primal-Dual Method with Linearization for Structured Convex Optimization
    Zhang, Xiayang
    Tang, Weiye
    Wang, Jiayue
    Zhang, Shiyu
    Zhang, Kangqun
    AXIOMS, 2025, 14 (02)
  • [20] Primal-dual subgradient method for constrained convex optimization problems
    Michael R. Metel
    Akiko Takeda
    Optimization Letters, 2021, 15 : 1491 - 1504