Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated with magnetic Schrodinger operators

被引:12
作者
Yang, Dachun
Yang, Dongyong [1 ]
机构
[1] Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ, Sch Math Sci, Beijing 100875, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Magnetic Schrodinger operator; Musielak-Orlicz-Hardy space; Lusin area function; growth function; maximal function; Riesz transform; REAL-VARIABLE CHARACTERIZATIONS; RIESZ TRANSFORMS; L-P; BMO; COMMUTATORS; DUALITY; DOMAINS;
D O I
10.1007/s11464-015-0432-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi be a growth function, and let A:= -(a double dagger a'ia)center dot(a double dagger a'ia)+V be a magnetic Schrodinger operator on L (2)(R-n ), n a (c) 3/4 2, where a:= (a (1), a (2), aEuro broken vertical bar, a (n) ) a L (loc) (2) (R-n ,R-n ) and 0 a (c) 1/2 V a L (loc) (1) (R-n ). We establish the equivalent characterizations of the Musielak-Orlicz-Hardy space H (A, phi) (R-n ), defined by the Lusin area function associated with , in terms of the Lusin area function associated with , the radial maximal functions and the non-tangential maximal functions associated with and , respectively. The boundedness of the Riesz transforms L (k) A (-1/2), k a {1, 2, aEuro broken vertical bar, n}, from H (A, phi) (R-n ) to H (phi) (R-n ) is also presented, where L (k) is the closure of - ia (k) in L (2)(R-n ). These results are new even when phi(x, t):= omega(x)t (p) for all x is an element of R-n and t is an element of (0,+a) with p is an element of (0, 1] and omega is an element of A (a)(R-n ) (the class of Muckenhoupt weights on R-n ).
引用
收藏
页码:1203 / 1232
页数:30
相关论文
共 42 条
  • [1] [Anonymous], 1987, Rev. Mat. Iberoam, DOI [DOI 10.4171/RMI/50.MR990859, DOI 10.4171/RMI/50]
  • [2] [Anonymous], 1991, MONOGRAPHS TXB PURE
  • [3] Hardy spaces of differential forms on Riemannian manifolds
    Auscher, Pascal
    McIntosh, Alan
    Russ, Emmanuel
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (01) : 192 - 248
  • [4] On the product of functions in BMO and H1
    Bonami, Aline
    Iwaniec, Tadeusz
    Jones, Peter
    Zinsmeister, Michel
    [J]. ANNALES DE L INSTITUT FOURIER, 2007, 57 (05) : 1405 - 1439
  • [5] Paraproducts and products of functions in BMO(Rn) and H1 (Rn) through wavelets
    Bonami, Aline
    Grellier, Sandrine
    Luong Dang Ky
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (03): : 230 - 241
  • [6] Orlicz-Hardy spaces associated to operators satisfying bounded H∞ functional calculus and Davies-Gaffney estimates
    Bui The Anh
    Li, Ji
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) : 485 - 501
  • [7] WEIGHTED LOCAL ORLICZ-HARDY SPACES ON DOMAINS AND THEIR APPLICATIONS IN INHOMOGENEOUS DIRICHLET AND NEUMANN PROBLEMS
    Cao, Jun
    Chang, Der-Chen
    Yang, Dachun
    Yang, Sibei
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (09) : 4729 - 4809
  • [8] EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS
    COIFMAN, RR
    WEISS, G
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) : 569 - 645
  • [9] THE STRUCTURE OF THE REVERSE HOLDER CLASSES
    CRUZURIBE, D
    NEUGEBAUER, CJ
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (08) : 2941 - 2960
  • [10] Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces
    Diening, L
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2005, 129 (08): : 657 - 700