Geometry eigenvalues and the scalar product from recoupling theory in loop quantum gravity

被引:155
|
作者
DePietri, R
Rovelli, C
机构
[1] IST NAZL FIS NUCL, SEZ MILANO, GRP COLLEGATO PARMA, I-43100 PARMA, PR, ITALY
[2] UNIV PITTSBURGH, DEPT PHYS & ASTRON, PITTSBURGH, PA 15260 USA
关键词
D O I
10.1103/PhysRevD.54.2664
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We summarize the basics of the loop representation of quantum gravity and describe the main aspects of the formalism, including its latest developments, in a reorganized and consistent form. Recoupling theory, in its graphical tangle-theoretic Temperley-Lieb formulation, provides a powerful calculation tool in this context. We describe its application to the loop representation in detail. Using recoupling theory, we derive general expressions for the spectrum of the quantum area and the quantum volume operators. We compute several volume eigenvalues explicitly. We introduce a scalar product with respect to which area and volume are symmetric operators, and (the trivalent expansions of) the spin network states are orthonormal.
引用
收藏
页码:2664 / 2690
页数:27
相关论文
共 50 条
  • [1] The complete spectrum of the area from recoupling theory in loop quantum gravity
    Frittelli, S
    Lehner, L
    Rovelli, C
    CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (11) : 2921 - 2931
  • [2] Spin networks and recoupling in loop quantum gravity
    DePietri, R
    NUCLEAR PHYSICS B, 1997, : 251 - 254
  • [3] Eigenvalues of the volume operator in loop quantum gravity
    Meissner, KA
    CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (03) : 617 - 625
  • [4] Gravity quantized: Loop quantum gravity with a scalar field
    Domagala, Marcin
    Giesel, Kristina
    Kaminski, Wojciech
    Lewandowski, Jerzy
    PHYSICAL REVIEW D, 2010, 82 (10)
  • [5] Effective Kerr geometry from loop quantum gravity
    Fazzini, Francesco
    PHYSICAL REVIEW D, 2025, 111 (04)
  • [6] Geometry of loop quantum gravity on a graph
    Rovelli, Carlo
    Speziale, Simone
    PHYSICAL REVIEW D, 2010, 82 (04)
  • [7] Symmetric scalar constraint for loop quantum gravity
    Lewandowski, Jerzy
    Sahlmann, Hanno
    PHYSICAL REVIEW D, 2015, 91 (04):
  • [8] Fermions, loop quantum gravity and geometry
    Chakravarty, Nabajit
    Mullick, Lipika
    Bandyopadhyay, Pratul
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2017, 26 (11):
  • [9] Loop quantum gravity coupled to a scalar field
    Lewandowski, Jerzy
    Sahlmann, Hanno
    PHYSICAL REVIEW D, 2016, 93 (02)
  • [10] On the distribution of the eigenvalues of the area operator in loop quantum gravity
    Barbero G, J. Fernando
    Margalef-Bentabol, Juan
    Villasenor, Eduardo J. S.
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (06)