Prostate and dominant intraprostatic lesion segmentation on PET/CT using cascaded regional-net

被引:11
|
作者
Matkovic, Luke A. [1 ,2 ]
Wang, Tonghe [1 ,3 ]
Lei, Yang [1 ]
Akin-Akintayo, Oladunni O. [4 ]
Ojo, Olayinka A. Abiodun [4 ]
Akintayo, Akinyemi A. [4 ]
Roper, Justin [1 ,2 ,3 ]
Bradley, Jeffery D. [1 ,3 ]
Liu, Tian [1 ,3 ]
Schuster, David M. [3 ,4 ]
Yang, Xiaofeng [1 ,2 ,3 ]
机构
[1] Emory Univ, Dept Radiat Oncol, Atlanta, GA 30322 USA
[2] Georgia Inst Technol, Sch Mech Engn, Atlanta, GA 30332 USA
[3] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
[4] Emory Univ, Dept Radiol & Imaging Sci, Atlanta, GA 30322 USA
基金
美国国家卫生研究院;
关键词
PET; CT; prostate; dominant intraprostatic lesion; segmentation; deep learning; DOSE-ESCALATION; CANCER; MRI;
D O I
10.1088/1361-6560/ac3c13
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Focal boost to dominant intraprostatic lesions (DILs) has recently been proposed for prostate radiation therapy. Accurate and fast delineation of the prostate and DILs is thus required during treatment planning. In this paper, we develop a learning-based method using positron emission tomography (PET)/computed tomography (CT) images to automatically segment the prostate and its DILs. To enable end-to-end segmentation, a deep learning-based method, called cascaded regional-Net, is utilized. The first network, referred to as dual attention network, is used to segment the prostate via extracting comprehensive features from both PET and CT images. A second network, referred to as mask scoring regional convolutional neural network (MSR-CNN), is used to segment the DILs from the PET and CT within the prostate region. Scoring strategy is used to diminish the misclassification of the DILs. For DIL segmentation, the proposed cascaded regional-Net uses two steps to remove normal tissue regions, with the first step cropping images based on prostate segmentation and the second step using MSR-CNN to further locate the DILs. The binary masks of DILs and prostates of testing patients are generated on the PET/CT images by the trained model. For evaluation, we retrospectively investigated 49 prostate cancer patients with PET/CT images acquired. The prostate and DILs of each patient were contoured by radiation oncologists and set as the ground truths and targets. We used five-fold cross-validation and a hold-out test to train and evaluate our method. The mean surface distance and DSC values were 0.666 +/- 0.696 mm and 0.932 +/- 0.059 for the prostate and 0.814 +/- 1.002 mm and 0.801 +/- 0.178 for the DILs among all 49 patients. The proposed method has shown promise for facilitating prostate and DIL delineation for DIL focal boost prostate radiation therapy.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Prostate and Tumor Segmentation on PET/CT using Dual Mask R-CNN
    Wang, Tonghe
    Lei, Yang
    Akin-Akintayo, Oladunni O.
    Ojo, Olayinka A. Abiodun
    Akintayo, Akinyemi A.
    Curran, Walter J.
    Liu, Tian
    Schuster, David M.
    Yang, Xiaofeng
    MEDICAL IMAGING 2021: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11600
  • [2] MRI-based Prostate and Dominant Lesion Segmentation using Deep Neural Network
    Wang, Tonghe
    Lei, Yang
    Ojo, Olayinka A. Abiodun
    Akin-Akintayo, Oladunni O.
    Akintayo, Akinyemi A.
    Curran, Walter J.
    Liu, Tian
    Schuster, David M.
    Yang, Xiaofeng
    MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597
  • [3] MRI-based prostate and dominant lesion segmentation using cascaded scoring convolutional neural network
    Eidex, Zachary A.
    Wang, Tonghe
    Lei, Yang
    Axente, Marian
    Akin-Akintayo, Oladunni O.
    Ojo, Olayinka A. Abiodun
    Akintayo, Akinyemi A.
    Roper, Justin
    Bradley, Jeffery D.
    Liu, Tian
    Schuster, David M.
    Yang, Xiaofeng
    MEDICAL PHYSICS, 2022, 49 (08) : 5216 - 5224
  • [4] Dominant intraprostatic lesion boosting in sexual-sparing radiotherapy of prostate cancer: A planning feasibility study
    Ciabatti, Selena
    Ntreta, Maria
    Buwenge, Milly
    Gaudiano, Caterina
    Sessagesimi, Elisa
    Romani, Fabrizio
    Angelini, Anna L.
    Cammelli, Silvia
    Macchia, Gabriella
    Deodato, Francesco
    Zamagni, Alice
    Golfieri, Rita
    Morganti, Alessio G.
    Cilla, Savino
    MEDICAL DOSIMETRY, 2019, 44 (04) : 356 - 364
  • [5] Pilot study comparing dominant intraprostatic lesion volume using Ga-68 prostate-specific membrane antigen PET-computed tomography and multiparametric MRI
    Sasidharan, Ajay
    Murthy, Vedang
    Natarajan, Aravintho
    Agarwal, Archi
    Ranagrajan, Venkatesh
    Gudi, Suresh
    Singh, Somesh
    Popat, Palak
    NUCLEAR MEDICINE COMMUNICATIONS, 2020, 41 (12) : 1291 - 1298
  • [6] Intraprostatic Tumor Segmentation on PSMA PET Images in Patients with Primary Prostate Cancer with a Convolutional Neural Network
    Kostyszyn, Dejan
    Fechter, Tobias
    Bartl, Nico
    Grosu, Anca L.
    Gratzke, Christian
    Sigle, August
    Mix, Michael
    Ruf, Juri
    Fassbender, Thomas F.
    Kiefer, Selina
    Bettermann, Alisa S.
    Nicolay, Nils H.
    Spohn, Simon
    Kramer, Maria U.
    Bronsert, Peter
    Guo, Hongqian
    Qiu, Xuefeng
    Wang, Feng
    Henkenberens, Christoph
    Werner, Rudolf A.
    Baltas, Dimos
    Meyer, Philipp T.
    Derlin, Thorsten
    Chen, Mengxia
    Zamboglou, Constantinos
    JOURNAL OF NUCLEAR MEDICINE, 2021, 62 (06) : 823 - 828
  • [7] Lesion segmentation on 18F-fluciclovine PET/CT images using deep learning
    Wang, Tonghe
    Lei, Yang
    Schreibmann, Eduard
    Roper, Justin
    Liu, Tian
    Schuster, David M.
    Jani, Ashesh B.
    Yang, Xiaofeng
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [8] Cone beam CT-based dose accumulation and analysis of delivered dose to the dominant intraprostatic lesion in primary radiotherapy of prostate cancer
    Tamihardja, Joerg
    Cirsi, Sinan
    Kessler, Patrick
    Razinskas, Gary
    Exner, Florian
    Richter, Anne
    Polat, Bulent
    Flentje, Michael
    RADIATION ONCOLOGY, 2021, 16 (01)
  • [9] Experimental assessments of intrafractional prostate motion on sequential and simultaneous boost to a dominant intraprostatic lesion
    Abdellatif, Ady
    Craig, Jeff
    Jensen, Michael
    Mulligan, Matt
    Mosalaei, Homeira
    Bauman, Glenn
    Chen, Jeff
    Wong, Eugene
    MEDICAL PHYSICS, 2012, 39 (03) : 1505 - 1517
  • [10] Prostate Stereotactic Ablative Radiation Therapy Using Volumetric Modulated Arc Therapy to Dominant Intraprostatic Lesions
    Murray, Louise J.
    Lilley, John
    Thompson, Christopher M.
    Cosgrove, Vivian
    Mason, Josh
    Sykes, Jonathan
    Franks, Kevin
    Sebag-Montefiore, David
    Henry, Ann M.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2014, 89 (02): : 406 - 415