Root transcriptome sequencing and differentially expressed drought-responsive genes in the Platycladus orientalis (L.)

被引:16
|
作者
Zhang, Sheng [1 ,2 ]
Zhang, Lingling [1 ]
Zhao, Zhong [1 ,2 ]
Li, Yiming [1 ,2 ]
Zhou, Kaikai [1 ,2 ]
Su, Li [1 ,2 ]
Zhou, Qianyi [1 ,2 ]
机构
[1] Northwest A&F Univ, Coll Forestry, Yangling 712100, Shaanxi, Peoples R China
[2] Key Comprehens Lab Forestry, Yangling, Shaanxi, Peoples R China
关键词
Platycladus orientalis; Transcriptome; Drought stress; Gene expression; RNA-SEQ DATA; HIGH-SALINITY STRESSES; RECEPTOR-LIKE KINASE; SALT STRESS; PROLINE ACCUMULATION; DEHYDRATION-STRESS; IMPROVES DROUGHT; ABSCISIC-ACID; COLD STRESS; TOLERANCE;
D O I
10.1007/s11295-016-1042-7
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Platycladus orientalis (L.) is used extensively for afforestation and is a common medicinal ingredient. Because of its drought tolerance, P. orientalis is widely used for afforestation in arid and semi-arid areas. To better understand the mechanisms involved in drought-stress tolerance in this important tree, the transcriptome profiles of drought-treated P. orientalis seedlings were analyzed using Illumina technology, and differentially expressed genes (DEGs) between drought-treated and well-watered trees were identified. We performed transcriptome sequencing of P. orientalis roots using the Illumina 4000 paired-end sequencing technique. More than 53 million 151-bp paired-end clean reads were obtained from each of the cDNA libraries and biological replicates, and de novo assembly generated 148,392 unigenes with an average length of 927.77 bp. After removing contaminating sequences, we found that 29.9 % (34,845) of the unigenes exhibited significant similarity to known sequences in the GenBank non-redundant protein database. A total of 3930 unigenes were found to be significantly differentially expressed between drought-treated and well-watered trees. Among them, 881 (22.42 %) were up-regulated and 3049 (77.58 %) were down-regulated in roots. Several DEGs had known functions in categories related to the biosynthesis of secondary metabolites, phenylalanine metabolism, starch and sucrose metabolism, and arginine and proline metabolism. A total of 194 genes that were found to be differentially regulated in response to drought stress were categorized as transcription factors. The transcriptome profiles obtained provide a valuable resource for future research to understand the molecular adaptation of Cupressaceae plants under drought condition and facilitate the exploration of drought-tolerant candidate genes.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Root transcriptome sequencing and differentially expressed drought-responsive genes in the Platycladus orientalis (L.)
    Sheng Zhang
    Lingling Zhang
    Zhong Zhao
    Yiming Li
    Kaikai Zhou
    Li Su
    Qianyi Zhou
    Tree Genetics & Genomes, 2016, 12
  • [2] Identification of Differentially Expressed Drought-Responsive Genes in Guar [Cyamopsis tetragonoloba (L.) Taub]
    Alshameri, Aref
    Al-Qurainy, Fahad
    Gaafar, Abdel-Rhman
    Khan, Salim
    Nadeem, Mohammad
    Alansi, Saleh
    Shaikhaldein, Hassan O.
    Salih, Abdalrhaman M.
    INTERNATIONAL JOURNAL OF GENOMICS, 2020, 2020
  • [3] Transcriptome Sequencing of Chickpea (Cicer arietinum L.) Genotypes for Identification of Drought-Responsive Genes Under Drought Stress Condition
    Manoj Kumar
    Abhishek Singh Chauhan
    Manoj Kumar
    Mohd Aslam Yusuf
    Indraneel Sanyal
    Puneet Singh Chauhan
    Plant Molecular Biology Reporter, 2019, 37 : 186 - 203
  • [4] Transcriptome Sequencing of Chickpea (Cicer arietinum L.) Genotypes for Identification of Drought-Responsive Genes Under Drought Stress Condition
    Kumar, Manoj
    Chauhan, Abhishek Singh
    Kumar, Manoj
    Yusuf, Mohd Aslam
    Sanyal, Indraneel
    Chauhan, Puneet Singh
    PLANT MOLECULAR BIOLOGY REPORTER, 2019, 37 (03) : 186 - 203
  • [5] Transcriptome sequencing of the apricot (Prunus armeniaca L.) and identification of differentially expressed genes involved in drought stress
    Liu, Jia
    Deng, Jia Lin
    Tian, Yun
    PHYTOCHEMISTRY, 2020, 171
  • [6] Transcriptome characterization and sequencing-based identification of drought-responsive genes in potato
    Ning Zhang
    Bailin Liu
    Congyu Ma
    Guodong Zhang
    Jing Chang
    Huaijun Si
    Di Wang
    Molecular Biology Reports, 2014, 41 : 505 - 517
  • [7] Transcriptome characterization and sequencing-based identification of drought-responsive genes in potato
    Zhang, Ning
    Liu, Bailin
    Ma, Congyu
    Zhang, Guodong
    Chang, Jing
    Si, Huaijun
    Wang, Di
    MOLECULAR BIOLOGY REPORTS, 2014, 41 (01) : 505 - 517
  • [8] Transcriptome analysis of drought-responsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves
    Li, Hua
    Li, Min
    Wei, Xingliang
    Zhang, Xia
    Xue, Ruili
    Zhao, Yidan
    Zhao, Huijie
    MOLECULAR GENETICS AND GENOMICS, 2017, 292 (05) : 1091 - 1110
  • [9] Transcriptome analysis of drought-responsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves
    Hua Li
    Min Li
    Xingliang Wei
    Xia Zhang
    Ruili Xue
    Yidan Zhao
    Huijie Zhao
    Molecular Genetics and Genomics, 2017, 292 : 1091 - 1110
  • [10] Comparative Analysis of Drought-Responsive Transcriptome in Different Genotype Saccharum spontaneum L.
    Wang, Tian-Ju
    Wang, Xian-Hong
    Yang, Qing-Hui
    SUGAR TECH, 2020, 22 (03) : 411 - 427