Curse of Feature Selection: a Comparison Experiment of DDoS Detection Using Classification Techniques

被引:0
作者
Wang, Wenjia [1 ]
Sadjadi, Seyed Masoud [1 ]
Rishe, Naphtali [1 ]
机构
[1] Florida Int Univ, Knight Fdn Sch Comp & Informat Sci, Miami, FL 33199 USA
来源
2022 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING, ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM | 2022年
基金
美国国家科学基金会;
关键词
Cybersecurity; DDoS; Supervised Learning; Classification; Curse of Dimensionality; Feature Selection; MACHINE LEARNING ALGORITHMS;
D O I
10.1109/ISPA-BDCloud-SocialCom-SustainCom57177.2022.00040
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Distributed denial-of-service (DDoS) attack is a malicious cybersecurity attack that has become a global threat. Machine learning (ML) as an advanced technology has been proven to be an effective way against DDoS attacks. Feature selection is a crucial step in ML, and researchers have put endless efforts to mitigate the "Curse of Dimensionality". Feature selection is also causing problems to ML models, such as a decrease in prediction accuracy. Four supervised classification techniques, namely, Decision Tree (DT), k-Nearest Neighbors (KNN), Logistic Regression (LR), and Random Forest (RF), are tested using mutual information score ranking to study the necessity of feature selection in DDoS detection.
引用
收藏
页码:262 / 269
页数:8
相关论文
共 50 条
  • [31] Efficient Detection of DDoS Attacks Using a Hybrid Deep Learning Model with Improved Feature Selection
    Alghazzawi, Daniyal
    Bamasag, Omaimah
    Ullah, Hayat
    Asghar, Muhammad Zubair
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [32] Robust Feature Selection Using Ensemble Feature Selection Techniques
    Saeys, Yvan
    Abeel, Thomas
    Van de Peer, Yves
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PART II, PROCEEDINGS, 2008, 5212 : 313 - +
  • [33] Multi-objective techniques for feature selection and classification in digital mammography
    Thawkar, Shankar
    Singh, Law Kumar
    Khanna, Munish
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2021, 15 (01): : 115 - 125
  • [34] A Novel Cloud Intrusion Detection System Using Feature Selection and Classification
    Kannan, Anand
    Venkatesan, Karthik Gururajan
    Stagkopoulou, Alexandra
    Li, Sheng
    Krishnan, Sathyavakeeswaran
    Rahman, Arifur
    INTERNATIONAL JOURNAL OF INTELLIGENT INFORMATION TECHNOLOGIES, 2015, 11 (04) : 1 - 15
  • [35] Review on intrusion detection using feature selection with machine learning techniques
    Kalimuthan, C.
    Renjit, J. Arokia
    MATERIALS TODAY-PROCEEDINGS, 2020, 33 : 3794 - 3802
  • [36] Using Feature Selection and Classification Scheme for Automating Phishing Email Detection
    Hamid, Isredza Rahmi A.
    Abawajy, Jemal
    Kim, Tai-hoon
    STUDIES IN INFORMATICS AND CONTROL, 2013, 22 (01): : 61 - 70
  • [37] Clustering Enabled Classification using Ensemble Feature Selection for Intrusion Detection
    Salo, Fadi
    Injadat, MohammadNoor
    Moubayed, Abdallah
    Nassif, Ali Bou
    Essex, Aleksander
    2019 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), 2019, : 276 - 281
  • [38] Accuracy Enhancement for Breast Cancer Detection Using Classification and Feature Selection
    Jain, Somil
    Kumar, Puneet
    INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH, 2022, 12 (02)
  • [39] Investigation of Hybrid Feature Selection Techniques for Autism Classification using EEG Signals
    Thirumal, S.
    Thangakumar, J.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (04) : 651 - 659
  • [40] A comparison of feature selection and classification methods in DNA methylation studies using the Illumina Infinium platform
    Joanna Zhuang
    Martin Widschwendter
    Andrew E Teschendorff
    BMC Bioinformatics, 13