Higher order variations of constant mean curvature surfaces

被引:4
作者
Koiso, Miyuki [1 ]
Palmer, Bennett [2 ]
机构
[1] Kyushu Univ, Inst Math Ind, Nishi Ku, Fukuoka 8190395, Japan
[2] Idaho State Univ, Dept Math, Pocatello, ID 83209 USA
关键词
STABILITY;
D O I
10.1007/s00526-017-1246-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the third and fourth variation of area for a compact domain in a constant mean curvature surface when there is a Killing field on R-3 whose normal component vanishes on the boundary. Examples are given to show that, in the presence of a zero eigenvalue, the non negativity of the second variation has no implications for the local area minimization of the surface.
引用
收藏
页数:28
相关论文
共 8 条
[1]   STABILITY OF HYPERSURFACES WITH CONSTANT MEAN-CURVATURE [J].
BARBOSA, JL ;
DOCARMO, M .
MATHEMATISCHE ZEITSCHRIFT, 1984, 185 (03) :339-353
[2]  
Coddington E.A., 1955, THEORY ORDINARY DIFF
[3]  
Kenmotsu K., 2003, Translations of Mathematical Monographs, V221
[4]   Geometry and stability of surfaces with constant anisotropic mean curvature [J].
Koiso, M ;
Palmer, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (06) :1817-1852
[5]   Deformation and stability of surfaces with constant mean curvature [J].
Koiso, M .
TOHOKU MATHEMATICAL JOURNAL, 2002, 54 (01) :145-159
[6]   Stability and bifurcation for surfaces with constant mean curvature [J].
Koiso, Miyuki ;
Palmer, Bennett ;
Piccione, Paolo .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2017, 69 (04) :1519-1554
[7]  
ROUSSOS IM, 1987, BOL SOC BRAS MAT, V18, P95, DOI DOI 10.1007/BF02590026
[8]  
SMALE S, 1965, J MATH MECH, V14, P1049