ANALYSIS OF GENERALIZED BREGMAN SURROGATE ALGORITHMS FOR NONSMOOTH NONCONVEX STATISTICAL LEARNING

被引:2
作者
She, Yiyuan [1 ]
Wang, Zhifeng [1 ]
Jin, Jiuwu [1 ]
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
Nonconvex optimization; nonsmooth optimization; MM algorithms; Bregman divergence; statistical algorithmic analysis; momentum-based acceleration; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; ORACLE INEQUALITIES; CONVERGENCE; REGRESSION; SHRINKAGE; MODELS;
D O I
10.1214/21-AOS2090
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Modern statistical applications often involve minimizing an objective function that may be nonsmooth and/or nonconvex. This paper focuses on a broad Bregman-surrogate algorithm framework including the local linear approximation, mirror descent, iterative thresholding, DC programming and many others as particular instances. The recharacterization via generalized Bregman functions enables us to construct suitable error measures and establish global convergence rates for nonconvex and nonsmooth objectives in possibly high dimensions. For sparse learning problems with a composite objective, under some regularity conditions, the obtained estimators as the surrogate's fixed points, though not necessarily local minimizers, enjoy provable statistical guarantees, and the sequence of iterates can be shown to approach the statistical truth within the desired accuracy geometrically fast. The paper also studies how to design adaptive momentum based accelerations without assuming convexity or smoothness by carefully controlling stepsize and relaxation parameters.
引用
收藏
页码:3434 / 3459
页数:26
相关论文
共 50 条
[31]   A stochastic two-step inertial Bregman proximal alternating linearized minimization algorithm for nonconvex and nonsmooth problems [J].
Guo, Chenzheng ;
Zhao, Jing ;
Dong, Qiao-Li .
NUMERICAL ALGORITHMS, 2024, 97 (01) :51-100
[32]   Variational Analysis of a Nonconvex and Nonsmooth Optimization Problem: An Introduction [J].
Royset, Johannes O. .
SET-VALUED AND VARIATIONAL ANALYSIS, 2025, 33 (02)
[33]   Linearized ADMM for Nonconvex Nonsmooth Optimization With Convergence Analysis [J].
Liu, Qinghua ;
Shen, Xinyue ;
Gu, Yuantao .
IEEE ACCESS, 2019, 7 :76131-76144
[34]   Learning-Rate-Free Momentum SGD with Reshuffling Converges in Nonsmooth Nonconvex Optimization [J].
Hu, Xiaoyin ;
Xiao, Nachuan ;
Liu, Xin ;
Toh, Kim-Chuan .
JOURNAL OF SCIENTIFIC COMPUTING, 2025, 102 (03)
[35]   Convex-Concave Backtracking for Inertial Bregman Proximal Gradient Algorithms in Nonconvex Optimization [J].
Mukkamala, Mahesh Chandra ;
Ochs, Peter ;
Pock, Thomas ;
Sabach, Shoham .
SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (03) :658-682
[36]   Two inertial proximal coordinate algorithms for a family of nonsmooth and nonconvex optimization problems [J].
Dang, Ya Zheng ;
Sun, Jie ;
Teo, Kok Lay .
AUTOMATICA, 2025, 171
[37]   Some accelerated alternating proximal gradient algorithms for a class of nonconvex nonsmooth problems [J].
Yang, Xin ;
Xu, Lingling .
JOURNAL OF GLOBAL OPTIMIZATION, 2023, 87 (2-4) :939-964
[38]   Incremental quasi-Newton algorithms for solving a nonconvex, nonsmooth, finite-sum optimization problem [J].
Yalcin, Gulcin Dinc ;
Curtis, Frank E. .
OPTIMIZATION METHODS & SOFTWARE, 2024, 39 (02) :345-367
[39]   A generalized inertial proximal alternating linearized minimization method for nonconvex nonsmooth problems [J].
Wang, Qingsong ;
Han, Deren .
APPLIED NUMERICAL MATHEMATICS, 2023, 189 :66-87
[40]   Nonconvex and Nonsmooth Optimization with Generalized Orthogonality Constraints: An Approximate Augmented Lagrangian Method [J].
Zhu, Hong ;
Zhang, Xiaowei ;
Chu, Delin ;
Liao, Li-Zhi .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (01) :331-372