共 50 条
Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity
被引:565
作者:
Yuan, Yong-Jun
[1
]
Shen, Zhikai
[1
]
Wu, Shiting
[1
]
Su, Yibing
[2
,3
]
Pei, Lang
[1
]
Ji, Zhenguo
[1
]
Ding, Mingye
[1
]
Bai, Wangfeng
[1
]
Chen, Yifan
[1
,4
]
Yu, Zhen-Tao
[2
,3
]
Zou, Zhigang
[2
,3
,5
]
机构:
[1] Hangzhou Dianzi Univ, Coll Mat & Environm Engn, Hangzhou 310018, Peoples R China
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Jiangsu Key Lab Nano Technol, Coll Engn & Appl Sci, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Jiangsu Key Lab Nano Technol, Coll Engn & Appl Sci, Nanjing 210093, Jiangsu, Peoples R China
[4] Zhejiang Univ, State Key Lab Silicon Mat, Sch Mat Sci & Engn, Cyrus Tang Ctr Sensor Mat & Applicat, Hangzhou 310027, Zhejiang, Peoples R China
[5] Macau Univ Sci & Technol, Macau Inst Syst Engn, Macau 999078, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Photocatalysis;
Hydrogen generation;
2D photocatalyst;
Graphitic carbon nitride;
Molybdenum disulfide;
GRAPHITIC CARBON NITRIDE;
HYDROGEN-EVOLUTION;
CHARGE SEPARATION;
MOS2;
WATER;
FABRICATION;
REDUCTION;
HETEROSTRUCTURE;
NANOJUNCTIONS;
COCATALYST;
D O I:
10.1016/j.apcatb.2019.01.043
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Although graphitic carbon nitride (g-C3N4) is an attractive photocatalyst for solar H-2 generation, the preparation of g-C3N4 nanosheets via a "green" and simple method as well as the construction of highly-efficient g-C3N4-based photocatalysts are still challenges. In this study, g-C3N4 nanosheets prepared by a simple probe sonication assisted liquid exfoliation method were used to construct 2D-2D MoS2/g-C3N4 photocatalyst for photocatalytic H-2 production. The 2D-2D MoS2/g-C3N4 photocatalyst containing 0.75% MoS2 showed the highest H-2 evolution rate of 1155 mu mol.h(-1)-g(-1) with an apparent quantum yield of 6.8% at 420 nm monochromatic light, which is much higher than that of the optimized OD-2D Pt/g-C3N4 photocatalyst. The high photocatalytic H-2 production activity of 2D-2D MoS2/g-C3N4 photocatalyst can be attributed to the large surface area and the formed 2D interfaces between MoS2 and g-C3N4 nanosheets. As demonstrated by photoluminescence quenching and time-resolved fluorescence decay studies, the 2D interfaces can accelerate the photoinduced charge transfer, resulting in the high photocatalytic H-2 production performance. This study provides a new strategy in developing highly-efficient g-C3N4-based photocatalysts for H-2 production via using 2D nanojunction as a bridge to promote the photoinduced charge separation and transfer.
引用
收藏
页码:120 / 128
页数:9
相关论文