Hamiltonian theory of classical and quantum gauge invariant perturbations in Bianchi I spacetimes

被引:11
作者
Agullo, Ivan [1 ]
Olmedo, Javier [1 ]
Sreenath, V [2 ]
机构
[1] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[2] Natl Inst Technol Karnataka, Dept Phys, Mangalore 575025, India
关键词
HOMOGENEOUS COSMOLOGICAL MODELS; ANISOTROPY;
D O I
10.1103/PhysRevD.101.123531
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive a Hamiltonian formulation of the theory of gauge invariant, linear perturbations in anisotropic Bianchi I spacetimes, and describe how to quantize this system. The matter content is assumed to be a minimally coupled scalar field with potential V(phi). We show that a Bianchi I spacetime generically induces both anisotropies and quantum entanglement on cosmological perturbations, and provide the tools to compute the details of these features. We then apply this formalism to a scenario in which the inflationary era is preceded by an anisotropic Bianchi I phase, and discuss the potential imprints in observable quantities. The formalism developed here paves the road to a simultaneous canonical quantization of both the homogeneous degrees of freedom and the perturbations, a task that we develop in a companion paper.
引用
收藏
页数:30
相关论文
共 43 条
[21]   Inflationary perturbations in anisotropic backgrounds and their imprint on the cosmic microwave background [J].
Gumrukcuoglu, A. Emir ;
Contaldi, Carlo R. ;
Peloso, Marco .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2007, (11)
[22]   Scalar-scalar, scalar-tensor, and tensor-tensor correlators from anisotropic inflation [J].
Gumrukcuoglu, A. Emir ;
Himmetoglu, Burak ;
Peloso, Marco .
PHYSICAL REVIEW D, 2010, 81 (06)
[23]   A quantum gravitational inflationary scenario in Bianchi-I spacetime [J].
Gupt, Brajesh ;
Singh, Parampreet .
CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (14)
[24]   Quantum gravitational Kasner transitions in Bianchi-I spacetime [J].
Gupt, Brajesh ;
Singh, Parampreet .
PHYSICAL REVIEW D, 2012, 86 (02)
[25]   Contrasting features of anisotropic loop quantum cosmologies: The role of spatial curvature [J].
Gupt, Brajesh ;
Singh, Parampreet .
PHYSICAL REVIEW D, 2012, 85 (04)
[26]  
Hawking S. W., 1975, Cambridge Monographs on Mathematical Physics
[27]   HAMILTONIAN-FORMALISM AND GAUGE-INVARIANCE FOR LINEAR PERTURBATIONS IN INFLATION [J].
LANGLOIS, D .
CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (02) :389-407
[28]   Loop quantum cosmology of the Bianchi I model: complete quantization [J].
Martin-Benito, M. ;
Garay, L. J. ;
Mena Marugan, G. A. ;
Wilson-Ewing, E. .
LOOPS 11: NON-PERTURBATIVE / BACKGROUND INDEPENDENT QUANTUM GRAVITY, 2012, 360
[29]   ANISOTROPY IN THE CHAOTIC INFLATIONARY UNIVERSE [J].
MOSS, I ;
SAHNI, V .
PHYSICS LETTERS B, 1986, 178 (2-3) :159-162
[30]   Complete Hamiltonian analysis of cosmological perturbations at all orders II: non-canonical scalar field [J].
Nandi, Debottam ;
Shankaranarayanan, S. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (10)