Essential spectrum of the discrete Laplacian on a perturbed periodic graph

被引:15
作者
Sasaki, Itaru [1 ]
Suzuki, Akito [2 ]
机构
[1] Shinshu Univ, Fac Sci, Dept Math Sci, Asahi Ku, Matsumoto, Nagano 3908621, Japan
[2] Shinshu Univ, Fac Engn, Div Math & Phys, Wakasato, Nagano 3808553, Japan
关键词
Infinite graph; Essential spectrum; Perturbation theory; Discrete Laplacian; Pendant; Random graph; SCHRODINGER-OPERATORS; INFINITE GRAPH; LATTICES;
D O I
10.1016/j.jmaa.2016.09.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the Laplacian on a perturbed periodic graph which might not be a periodic graph. We give a criterion for the essential spectrum of the Laplacian on the perturbed graph to include that on the unperturbed graph. This criterion is applicable to a wide class of graphs obtained by a non-compact perturbation such as adding or removing infinitely many vertices and edges. Using this criterion, we demonstrate how to determine the spectra of cone-like graphs, the upper-half plane, and graphs obtained from Z(2) by randomly adding vertices. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1863 / 1881
页数:19
相关论文
共 22 条
[1]   Spectral Properties of Schrodinger Operators on Perturbed Lattices [J].
Ando, Kazunori ;
Isozaki, Hiroshi ;
Morioka, Hisashi .
ANNALES HENRI POINCARE, 2016, 17 (08) :2103-2171
[2]   Inverse Scattering Theory for Discrete Schrodinger Operators on the Hexagonal Lattice [J].
Ando, Kazunori .
ANNALES HENRI POINCARE, 2013, 14 (02) :347-383
[3]  
[Anonymous], ARXIV150706441
[4]  
[Anonymous], ARXIV150606457
[5]  
[Anonymous], 2012, J MATH FOR IND
[6]   SCATTERING THEORY FOR LATTICE OPERATORS IN DIMENSION d ≥ 3 [J].
Bellissard, Jean ;
Schulz-Baldes, Hermann .
REVIEWS IN MATHEMATICAL PHYSICS, 2012, 24 (08)
[7]   The spectrum of the continuous Laplacian on a graph [J].
Cattaneo, C .
MONATSHEFTE FUR MATHEMATIK, 1997, 124 (03) :215-235
[8]  
HIGUCHI Y., 2004, Contemp. Math., V347, P29, DOI [10.1090/conm/347/06265, DOI 10.1090/CONM/347/06265]
[9]   Spectral and asymptotic properties of Grover walks on crystal lattices [J].
Higuchi, Yusuke ;
Konno, Norio ;
Sato, Iwao ;
Segawa, Etsuo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (11) :4197-4235
[10]   Spectral structure of the Laplacian on a covering graph [J].
Higuchi, Yusuke ;
Nomura, Yuji .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (02) :570-585