A semismooth Newton method for Tikhonov functionals with sparsity constraints

被引:75
作者
Griesse, R. [1 ]
Lorenz, D. A. [2 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
[2] Univ Bremen, Zentrum Technomath, D-28334 Bremen, Germany
关键词
D O I
10.1088/0266-5611/24/3/035007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Minimization problems in l(2) for Tikhonov functionals with sparsity constraints are considered. Sparsity of the solution is ensured by a weighted l(1) penalty term. The necessary and sufficient condition for optimality is shown to be slantly differentiable (Newton differentiable), hence a semismooth Newton method is applicable. Local superlinear convergence of this method is proved. Numerical examples are provided which show that our method compares favorably with existing approaches.
引用
收藏
页数:19
相关论文
共 24 条
[1]  
[Anonymous], 2000, MATH ITS APPL
[2]  
BARANIUK R, 2008, IN PRESS CONSTRUCT A
[3]  
BREDIES K, 2007, IN PRESS ITERATIVE S
[4]   Iterated hard shrinkage for minimization problems with sparsity constraints [J].
Bredies, Kristian ;
Lorenz, Dirk A. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (02) :657-683
[5]  
Candes E J., 2006, Proceedings of the International Congress of Mathematicians, V17, P1433, DOI [10.4171/022, DOI 10.4171/022]
[6]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[7]   Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage [J].
Chambolle, A ;
DeVore, RA ;
Lee, NY ;
Lucier, BJ .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) :319-335
[8]   Smoothing methods and semismooth methods for nondifferentiable operator equations [J].
Chen, XJ ;
Nashed, Z ;
Qi, LQ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (04) :1200-1216
[9]   Superlinear convergence of smoothing quasi-Newton methods for nonsmooth equations [J].
Chen, XJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 80 (01) :105-126
[10]   Signal recovery by proximal forward-backward splitting [J].
Combettes, PL ;
Wajs, VR .
MULTISCALE MODELING & SIMULATION, 2005, 4 (04) :1168-1200