High-dimensional asymptotics for percolation of Gaussian free field level sets

被引:14
作者
Drewitz, Alexander [1 ]
Rodriguez, Pierre-Francois [2 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] ETH, Dept Math, CH-8092 Zurich, Switzerland
关键词
Gaussian free field; percolation; level sets; long-range dependence; decoupling inequalities; high dimensions; STRONGLY CORRELATED SYSTEMS; RANDOM INTERLACEMENTS; ISOPERIMETRIC-INEQUALITIES; VACANT SET;
D O I
10.1214/EJP.v20-3416
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the Gaussian free field on Z(d), d >= 3, and prove that the critical density for percolation of its level sets behaves like 1/d(1+o(1)) as d tends to infinity. Our proof gives the principal asymptotic behavior of the corresponding critical level h(*) (d). Moreover, it shows that a related parameter h(**) (d) >= h(*) (d) introduced by Rodriguez and Sznitman in [24] is in fact asymptotically equivalent to h(*) (d).
引用
收藏
页码:1 / 39
页数:39
相关论文
共 33 条
[31]   ON THE CRITICAL PARAMETER OF INTERLACEMENT PERCOLATION IN HIGH DIMENSION [J].
Sznitman, Alain-Sol .
ANNALS OF PROBABILITY, 2011, 39 (01) :70-103
[32]  
Sznitman AS, 2010, ANN MATH, V171, P2039
[33]  
Talagrand M., 2003, SPIN GLASSES CHALLEN