High-dimensional asymptotics for percolation of Gaussian free field level sets

被引:14
作者
Drewitz, Alexander [1 ]
Rodriguez, Pierre-Francois [2 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] ETH, Dept Math, CH-8092 Zurich, Switzerland
关键词
Gaussian free field; percolation; level sets; long-range dependence; decoupling inequalities; high dimensions; STRONGLY CORRELATED SYSTEMS; RANDOM INTERLACEMENTS; ISOPERIMETRIC-INEQUALITIES; VACANT SET;
D O I
10.1214/EJP.v20-3416
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the Gaussian free field on Z(d), d >= 3, and prove that the critical density for percolation of its level sets behaves like 1/d(1+o(1)) as d tends to infinity. Our proof gives the principal asymptotic behavior of the corresponding critical level h(*) (d). Moreover, it shows that a related parameter h(**) (d) >= h(*) (d) introduced by Rodriguez and Sznitman in [24] is in fact asymptotically equivalent to h(*) (d).
引用
收藏
页码:1 / 39
页数:39
相关论文
共 33 条
[1]  
Adler R., 2007, RANDOM FIELDS GEOMET
[2]   LARGEST RANDOM COMPONENT OF A K-CUBE [J].
AJTAI, M ;
KOMLOS, J ;
SZEMEREDI, E .
COMBINATORICA, 1982, 2 (01) :1-7
[3]   PERCOLATION OF LEVEL SETS FOR 2-DIMENSIONAL RANDOM-FIELDS WITH LATTICE SYMMETRY [J].
ALEXANDER, KS ;
MOLCHANOV, SA .
JOURNAL OF STATISTICAL PHYSICS, 1994, 77 (3-4) :627-643
[4]   Percolation on finite graphs and isoperimetric inequalities [J].
Alon, N ;
Benjamini, I ;
Stacey, A .
ANNALS OF PROBABILITY, 2004, 32 (3A) :1727-1745
[5]   EDGE-ISOPERIMETRIC INEQUALITIES IN THE GRID [J].
BOLLOBAS, B ;
LEADER, I .
COMBINATORICA, 1991, 11 (04) :299-314
[6]   PERCOLATION IN STRONGLY CORRELATED SYSTEMS - THE MASSLESS GAUSSIAN FIELD [J].
BRICMONT, J ;
LEBOWITZ, JL ;
MAES, C .
JOURNAL OF STATISTICAL PHYSICS, 1987, 48 (5-6) :1249-1268
[7]  
Broadbent S.R., 1957, Math. Proc. Cambridge Philos. Soc., V53, P629, DOI DOI 10.1017/S0305004100032680
[8]   On chemical distances and shape theorems in percolation models with long-range correlations [J].
Drewitz, Alexander ;
Rath, Balazs ;
Sapozhnikov, Artem .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (08)
[9]   Percolation transition for some excursion sets [J].
Garet, O .
ELECTRONIC JOURNAL OF PROBABILITY, 2004, 9 :255-292
[10]  
Georgii HO, 2001, PHASE TRANS, V18, P1, DOI 10.1016/S1062-7901(01)80008-2