WAVE AND MAXWELL'S EQUATIONS IN CARNOT GROUPS

被引:14
|
作者
Franchi, Bruno [1 ]
Tesi, Maria Carla [1 ]
机构
[1] Univ Bologna, Dipartimento Matemat, Piazza Porta S Donato 5, I-40126 Bologna, Italy
关键词
Carnot groups; differential forms; Maxwell's equations; wave equations; COMPENSATED COMPACTNESS; FUNDAMENTAL SOLUTION; DIFFERENTIAL FORMS; CONTACT COMPLEX; AREA FORMULA; OPERATORS; THEOREM; SPACES;
D O I
10.1142/S0219199712500320
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we define Maxwell's equations in the setting of the intrinsic complex of differential forms in Carnot groups introduced by M. Rumin. It turns out that these equations are higher-order equations in the horizontal derivatives. In addition, when looking for a vector potential, we have to deal with a new class of higher-order evolution equations that replace usual wave equations of the Euclidean setting and that are no more hyperbolic. We prove equivalence of these equations with the "geometric equations" defined in the intrinsic complex, as well as existence and properties of solutions.
引用
收藏
页数:62
相关论文
共 50 条
  • [31] Identifying 1-rectifiable measures in Carnot groups
    Badger, Matthew
    Li, Sean
    Zimmerman, Scott
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2023, 11 (01):
  • [32] On the Uniqueness of a Solution to Anisotropic Maxwell's Equations
    Buchukuri, T.
    Duduchava, R.
    Kapanadze, D.
    Natroshvili, D.
    TOPICS IN OPERATOR THEORY, VOL 2: SYSTEMS AND MATHEMATICAL PHYSICS, 2010, 203 : 137 - +
  • [33] Complex Maxwell's equations
    Arbab, A. I.
    CHINESE PHYSICS B, 2013, 22 (03)
  • [34] Maxwell's equations with a polarization independent wave velocity: Direct and inverse problems
    Kurylev, Yaroslav
    LassaS, Matti
    Somersalo, Erkki
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (03): : 237 - 270
  • [35] Quantized Maxwell's equations
    Arbab, A. I.
    OPTIK, 2017, 136 : 64 - 70
  • [36] Complex Maxwell's equations
    A.I.Arbab
    Chinese Physics B, 2013, 22 (03) : 115 - 120
  • [37] On the universality of Maxwell's equations
    Sattinger, D. H.
    MONATSHEFTE FUR MATHEMATIK, 2018, 186 (03): : 503 - 523
  • [38] On the universality of Maxwell’s equations
    D. H. Sattinger
    Monatshefte für Mathematik, 2018, 186 : 503 - 523
  • [39] Second order approximations for kinetic and potential energies in Maxwell's wave equations
    Ferreira, J. A.
    Jordao, D.
    Pinto, L.
    APPLIED NUMERICAL MATHEMATICS, 2017, 120 : 125 - 140
  • [40] Almost periodic viscosity solutions of nonlinear evolution equations in Carnot groups
    Marchi, Silvana
    APPLICABLE ANALYSIS, 2014, 93 (06) : 1264 - 1282