Cognitive Target Tracking via Angle-Range-Doppler Estimation With Transmit Subaperturing FDA Radar

被引:69
作者
Gui, Ronghua [1 ]
Wang, Wen-Qin [1 ]
Pan, Ye [1 ]
Xu, Jian [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Commun & Informat Engn, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Cognitive radar; target tracking; cognitive target tracking; frequency diverse array (FDA); transmit subaperturing; cognitive beamforming; FREQUENCY DIVERSE ARRAY; WAVE-FORM DESIGN; MIMO RADAR; OPTIMIZATION; CLUTTER; SIGNAL; LOCALIZATION; ANTENNAS; SENSORS; BOUNDS;
D O I
10.1109/JSTSP.2018.2793761
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cognitive radar is an intelligent active sensing technique, which can learn the interactions between radar and its surrounding environment and adaptively adjust the transmit waveforms or parameters for improved performance. In this paper, we propose a cognitive target tracking scheme via angle-range-Doppler estimation with transmit subaperturing frequency diverse array (TS-FDA) radar. FDA is an emerging array technique that employs a small frequency increment across its array elements to produce a range-angle-dependent beampattern, which provides promising applications for joint angle-range-Doppler estimation of targets. In order to jointly enjoy the advantages of FDA localization in angle-range dimension and phased-array in coherent gain, we divide the FDA elements into multiple subarrays and propose two optimization criteria, respectively, based on signal-to-noise ratio and Cramer-Rao bound, to adaptively design the transmit weight matrix according to the prior knowledge extracted from the cognitive observation data at each transmission updating for improved tracking performance. All proposed app roaches are verified by numerical results.
引用
收藏
页码:76 / 89
页数:14
相关论文
共 58 条
[1]  
[Anonymous], 2005, FUNDAMENTALS RADAR S
[2]  
Antonik P., 2006, P INT WAV DIV DES C, P1
[3]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[4]   Knowledge-Aided (Potentially Cognitive) Transmit Signal and Receive Filter Design in Signal-Dependent Clutter [J].
Aubry, A. ;
De Maio, A. ;
Farina, A. ;
Wicks, M. .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2013, 49 (01) :93-117
[5]  
Aubry A., 2016, PROC SENSOR SIGNAL P, P1
[6]   Ambiguity Function Shaping for Cognitive Radar Via Complex Quartic Optimization [J].
Aubry, Augusto ;
De Maio, Antonio ;
Jiang, Bo ;
Zhang, Shuzhong .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (22) :5603-5619
[7]   Cognitive Radar Framework for Target Detection and Tracking [J].
Bell, Kristine L. ;
Baker, Christopher J. ;
Smith, Graeme E. ;
Johnson, Joel T. ;
Rangaswamy, Muralidhar .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2015, 9 (08) :1427-1439
[8]   Knowledge-based radar signal and data processing - A tutorial overview [J].
Capraro, GT ;
Farina, A ;
Griffiths, H ;
Wicks, MC .
IEEE SIGNAL PROCESSING MAGAZINE, 2006, 23 (01) :18-29
[9]  
Chavali Phani, 2010, 2010 5th International Waveform Diversity and Design Conference (WDD 2010), P110, DOI 10.1109/WDD.2010.5592379
[10]   Exploitation of Linear Frequency Modulated Continuous Waveform (LFMCW) for Frequency Diverse Arrays [J].
Eker, T. ;
Demir, S. ;
Hizal, A. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (07) :3546-3553