On conditional compactly uniform pth-order integrability of random elements in Banach spaces

被引:3
作者
Cabrera, MO
Volodin, AI
机构
[1] Univ Sevilla, Dept Math Anal, E-41080 Seville, Spain
[2] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
关键词
random elements; randomly weighted sums; conditional compactly uniform pth-order integrability; conditional tightness; conditional uniform integrability; bounded approximation property; Schauder basis;
D O I
10.1016/S0167-7152(01)00159-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The notion of conditional compactly uniform pth-order integrability of an array of random elements in a separable Banach space concerning an array of random variables and relative to a sequence of sigma -algebras is introduced and characterized. We state a conditional law for randomly weighted sums of random elements in a Banach space with the bounded approximation property, and we prove that, under the introduced condition, the problem can be reduced to a similar problem for random elements in a finite-dimensional space. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:301 / 309
页数:9
相关论文
共 12 条
[1]   STRONG-CONVERGENCE OF WEIGHTED SUMS OF RANDOM ELEMENTS THROUGH THE EQUIVALENCE OF SEQUENCES OF DISTRIBUTIONS [J].
CUESTA, JA ;
MATRAN, C .
JOURNAL OF MULTIVARIATE ANALYSIS, 1988, 25 (02) :311-322
[2]   THE WEAK LAW OF LARGE NUMBERS FOR ARRAYS [J].
GUT, A .
STATISTICS & PROBABILITY LETTERS, 1992, 14 (01) :49-52
[3]   Convergence of randomly weighted sums of Banach space valued random elements and uniform integrability concerning the random weights [J].
Hu, TC ;
Cabrera, MO ;
Volodin, AI .
STATISTICS & PROBABILITY LETTERS, 2001, 51 (02) :155-164
[4]   BASES, FINITE DIMENSIONAL DECOMPOSITIONS AND WEAKER STRUCTURES IN BANACH SPACES [J].
JOHNSON, WB ;
ROSENTHAL, HP ;
ZIPPIN, M .
ISRAEL JOURNAL OF MATHEMATICS, 1971, 9 (04) :488-+
[5]  
LINDENSTRAUSS J, 1977, CLASSICAL BANACH SPA, pR1
[6]  
Ordonez Cabrera M, 1994, COLLECT MATH, V45, P121
[7]  
Ordonez Cabrera M., 1997, INT J MATH SCI, V20, P443
[8]  
PELCZYNSKI A, 1971, STUD MATH, V40, P239
[9]   On the limiting behavior of randomly weighted partial sums [J].
Rosalsky, A ;
Sreehari, M .
STATISTICS & PROBABILITY LETTERS, 1998, 40 (04) :403-410
[10]   Weak law of large numbers for arrays of random variables [J].
Sung, SH .
STATISTICS & PROBABILITY LETTERS, 1999, 42 (03) :293-298