ON THE GLOBAL STRUCTURE OF CONFORMAL GRADIENT SOLITONS WITH NONNEGATIVE RICCI TENSOR

被引:55
作者
Catino, Giovanni [1 ]
Mantegazza, Carlo [2 ]
Mazzieri, Lorenzo [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Scuola Normale Super Pisa, I-56126 Pisa, Italy
关键词
Conformal geometry; Yamabe solitons; warped products; MANIFOLDS; CURVATURE;
D O I
10.1142/S0219199712500459
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that any complete conformal gradient soliton with nonnegative Ricci tensor is either isometric to a direct product R x Nn-1, or globally conformally equivalent to the Euclidean space R-n or to the round sphere S-n. In particular, we show that any complete, noncompact, gradient Yamabe-type soliton with positive Ricci tensor is rotationally symmetric, whenever the potential function is nonconstant.
引用
收藏
页数:12
相关论文
共 10 条
[1]  
[Anonymous], 2011, PREPRINT
[2]  
[Anonymous], 2006, Grad. Stud. Math
[3]  
Besse A.L, 2008, CLASSICS MATH
[4]   SCALAR CURVATURE FUNCTIONS IN A CONFORMAL CLASS OF METRICS AND CONFORMAL TRANSFORMATIONS [J].
BOURGUIGNON, JP ;
EZIN, JP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 301 (02) :723-736
[5]  
Cao HD, 2012, MATH RES LETT, V19, P767
[6]   Lower bounds on Ricci curvature and the almost rigidity of warped products [J].
Cheeger, J ;
Colding, TH .
ANNALS OF MATHEMATICS, 1996, 144 (01) :189-237
[7]  
Guan PF, 2003, J REINE ANGEW MATH, V557, P219
[8]   A Kazdan-Warner type identity for the σk curvature [J].
Han, ZC .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (07) :475-478
[9]   On the classification of gradient Ricci solitons [J].
Petersen, Peter ;
Wylie, William .
GEOMETRY & TOPOLOGY, 2010, 14 (04) :2277-2300
[10]   COMPLETE RIEMANNIAN MANIFOLDS AND SOME VECTOR FIELDS [J].
TASHIRO, Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 117 (05) :251-&