Long time propagation and control on scarring for perturbed quantized hyperbolic toral automorphisms

被引:7
作者
Bouclet, JM [1 ]
De Bièvre, S [1 ]
机构
[1] Univ Lille 1, CNRS, UMR 8524, F-59655 Villeneuve Dascq, France
来源
ANNALES HENRI POINCARE | 2005年 / 6卷 / 05期
关键词
D O I
10.1007/s00023-005-0228-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that on a suitable time scale, logarithmic in (h) over bar, the coherent states on the two-torus, evolved under a quantized perturbed hyperbolic toral automorphism, equidistribute on the torus. We then use this result to obtain control on the possible strong scarring of eigenstates of the perturbed automorphisms by periodic orbits. Our main tool is an adapted Egorov theorem, valid for logarithmically long times.
引用
收藏
页码:885 / 913
页数:29
相关论文
共 24 条
[1]  
ANANTHRAMAN N, 2004, EIGENFUNCTIONS LAPLA
[2]  
[Anonymous], 1987, PROGR MATH
[3]   Ruelle-Perron-Yrobenius spectrum for Anosov maps [J].
Blank, M ;
Keller, G ;
Liverani, C .
NONLINEARITY, 2002, 15 (06) :1905-1973
[4]  
BONECCHI F, 2002, CONTROLLING STRONG S
[5]  
Bonechi F, 2003, DUKE MATH J, V117, P571
[6]  
Bonechi F, 2000, COMMUN MATH PHYS, V211, P659, DOI 10.1007/s002200050831
[7]  
Bouzouina A, 2002, DUKE MATH J, V111, P223
[8]   Equipartition of the eigenfunctions of quantized ergodic maps on the torus [J].
Bouzouina, A ;
DeBievre, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 178 (01) :83-105
[9]  
Brin M., 2002, INTRO DYNAMICAL SYST, DOI DOI 10.1017/CBO9780511755316
[10]  
DEVERDIERE YC, 1985, COMMUN MATH PHYS, V102, P497