DOA M-ESTIMATION USING SPARSE BAYESIAN LEARNING

被引:7
|
作者
Mecklenbraeuker, Christoph F. [1 ]
Gerstoft, Peter [2 ]
Ollila, Esa [3 ]
机构
[1] TU Wien, Inst Telecommun, Vienna, Austria
[2] Univ Calif San Diego, NoiseLab, San Diego, CA USA
[3] Aalto Univ, Dept Signal Proc & Acoust, Aalto, Finland
关键词
DOA estimation; robust statistics; outliers; sparsity; Bayesian learning; BLIND DECONVOLUTION; LOCALIZATION;
D O I
10.1109/ICASSP43922.2022.9746740
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Recent investigations indicate that Sparse Bayesian Learning (SBL) is lacking in robustness. We derive a robust and sparse Direction of Arrival (DOA) estimation framework based on the assumption that the array data has a centered (zero-mean) complex elliptically symmetric (ES) distribution with finite second-order moments. In the derivation, the loss function can be quite general. We consider three specific choices: the ML-loss for the circularly symmetric complex Gaussian distribution, the ML-loss for the complex multivariate t-distribution (MVT) with nu degrees of freedom, and the loss for Huber's M-estimator. For Gaussian loss, the method reduces to the classic SBL method. The root mean square DOA performance of the derived estimators is discussed for Gaussian, MVT, and epsilon-contaminated noise. The robust SBL estimators perform well for all cases and nearly identical with classical SBL for Gaussian noise.
引用
收藏
页码:4933 / 4937
页数:5
相关论文
共 50 条
  • [21] SPARSE BAYESIAN LEARNING FOR DOA ESTIMATION USING CO-PRIME AND NESTED ARRAYS
    Nannuru, Santosh
    Gerstoft, Peter
    Koochakzadeh, Ali
    Pal, Piya
    2018 IEEE 10TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2018, : 519 - 523
  • [22] A Novel Off-grid DOA Estimation Approach Using Sparse Bayesian Learning
    Jiao, Jianbo
    Pan, Xiang
    OCEANS 2024 - SINGAPORE, 2024,
  • [23] DOA estimation using sparse Bayesian learning for colocated MIMO radar with dynamic waveforms
    Liu, Bingfan
    Chen, Baixiao
    Yang, Minglei
    Xu, Hui
    2020 IEEE 11TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2020,
  • [24] Real-valued DOA estimation for spherical arrays using sparse Bayesian learning
    Huang, Qinghua
    Zhang, Guangfei
    Fang, Yong
    SIGNAL PROCESSING, 2016, 125 : 79 - 86
  • [25] DOD and DOA Estimation for Bistatic MIMO Radars with Sparse Bayesian Learning
    Chen, Fangfang
    Zheng, Jinghao
    Dai, Jisheng
    2018 IEEE INTERNATIONAL WORKSHOP ON ANTENNA TECHNOLOGY (IWAT), 2018,
  • [26] Sparse Bayesian Learning for DOA Estimation with Recursive Grid-Refining
    Wang, Lan
    Zheng, Jinghao
    Chen, Fangfang
    Dai, Jisheng
    2018 IEEE 10TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2018, : 184 - 188
  • [27] Root Sparse Bayesian Learning for Off-Grid DOA Estimation
    Dai, Jisheng
    Bao, Xu
    Xu, Weichao
    Chang, Chunqi
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (01) : 46 - 50
  • [28] DOA Estimation Method for Vector Hydrophones Based on Sparse Bayesian Learning
    Wang, Hongyan
    Bai, Yanping
    Ren, Jing
    Wang, Peng
    Xu, Ting
    Zhang, Wendong
    Zhang, Guojun
    SENSORS, 2024, 24 (19)
  • [29] Multisnapshot Sparse Bayesian Learning for DOA
    Gerstoft, Peter
    Mecklenbrauker, Christoph F.
    Xenaki, Angeliki
    Nannuru, Santosh
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (10) : 1469 - 1473
  • [30] Robust sparse Bayesian learning for DOA estimation in impulsive noise environments
    Zheng, Rui
    Xu, Xu
    Ye, Zhongfu
    Dai, Jisheng
    SIGNAL PROCESSING, 2020, 171