DOA M-ESTIMATION USING SPARSE BAYESIAN LEARNING

被引:7
作者
Mecklenbraeuker, Christoph F. [1 ]
Gerstoft, Peter [2 ]
Ollila, Esa [3 ]
机构
[1] TU Wien, Inst Telecommun, Vienna, Austria
[2] Univ Calif San Diego, NoiseLab, San Diego, CA USA
[3] Aalto Univ, Dept Signal Proc & Acoust, Aalto, Finland
来源
2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2022年
关键词
DOA estimation; robust statistics; outliers; sparsity; Bayesian learning; BLIND DECONVOLUTION; LOCALIZATION;
D O I
10.1109/ICASSP43922.2022.9746740
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Recent investigations indicate that Sparse Bayesian Learning (SBL) is lacking in robustness. We derive a robust and sparse Direction of Arrival (DOA) estimation framework based on the assumption that the array data has a centered (zero-mean) complex elliptically symmetric (ES) distribution with finite second-order moments. In the derivation, the loss function can be quite general. We consider three specific choices: the ML-loss for the circularly symmetric complex Gaussian distribution, the ML-loss for the complex multivariate t-distribution (MVT) with nu degrees of freedom, and the loss for Huber's M-estimator. For Gaussian loss, the method reduces to the classic SBL method. The root mean square DOA performance of the derived estimators is discussed for Gaussian, MVT, and epsilon-contaminated noise. The robust SBL estimators perform well for all cases and nearly identical with classical SBL for Gaussian noise.
引用
收藏
页码:4933 / 4937
页数:5
相关论文
共 32 条
[1]  
[Anonymous], 2002, OPTIMUM ARRAY PROCES
[2]   Semi-Supervised Source Localization in Reverberant Environments With Deep Generative Modeling [J].
Bianco, Michael J. ;
Gannot, Sharon ;
Fernandez-Grande, Efren ;
Gerstoft, Peter .
IEEE ACCESS, 2021, 9 :84956-84970
[3]   Experimental Evidence for Heavy Tailed Interference in the IoT [J].
Clavier, Laurent ;
Pedersen, Troels ;
Larrad, Ignacio ;
Lauridsen, Mads ;
Egan, Malcolm .
IEEE COMMUNICATIONS LETTERS, 2021, 25 (03) :692-695
[4]   Sparse Bayesian Learning Approach for Outlier-Resistant Direction-of-Arrival Estimation [J].
Dai, Jisheng ;
So, Hing Cheung .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (03) :744-756
[5]   Tree-Based Recursive Expectation-Maximization Algorithm for Localization of Acoustic Sources [J].
Dorfan, Yuval ;
Gannot, Sharon .
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2015, 23 (10) :1692-1703
[6]   Semiparametric CRB and Slepian-Bangs Formulas for Complex Elliptically Symmetric Distributions [J].
Fortunati, Stefano ;
Gini, Fulvio ;
Greco, Maria Sabrina ;
Zoubir, Abdelhak M. ;
Rangaswamy, Muralidhar .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (20) :5352-5364
[7]   Semiparametric Inference and Lower Bounds for Real Elliptically Symmetric Distributions [J].
Fortunati, Stefano ;
Gini, Fulvio ;
Greco, Maria Sabrina ;
Zoubir, Abdelhak M. ;
Rangaswamy, Muralidhar .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (01) :164-177
[8]   Signal enhancement using beamforming and nonstationarity with applications to speech [J].
Gannot, S ;
Burshtein, D ;
Weinstein, E .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (08) :1614-1626
[9]   Passive fathometer processing [J].
Gerstoft, Peter ;
Hodgkiss, William S. ;
Siderius, Martin ;
Huang, Chen-Fen ;
Harrison, Chris H. .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2008, 123 (03) :1297-1305
[10]   When Katrina hit California [J].
Gerstoft, Peter ;
Fehler, Michael C. ;
Sabra, Karim G. .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (17)