Isomorphic contact resonance force microscopy and piezoresponse force microscopy of an AlN thin film: demonstration of a new contact resonance technique

被引:2
作者
Robins, Lawrence H. [1 ]
Brubaker, Matt D. [2 ]
Tung, Ryan C. [3 ]
Killgore, Jason P. [1 ]
机构
[1] NIST, Appl Chem & Mat Div, Boulder, CO 80309 USA
[2] NIST, Div Appl Phys, Boulder, CO USA
[3] Univ Nevada Reno, Dept Mech Engn, Reno, NV USA
关键词
atomic force microscopy; contact resonance force microscopy; piezoresponse force microscopy; piezoelectric thin film; electromechanical properties; CALIBRATION;
D O I
10.1088/2399-1984/ab844f
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present a new contact resonance force microscopy (CRFM) imaging technique, isomorphic contact resonance (iso-CR), that acquires data at a constant contact resonance (CR) frequency, and hence constant tip-sample contact stiffness across the scan area. Constant CR frequency is obtained by performing force versus distance measurements to vary the applied force at each pixel (i.e. force-volume mapping mode). The CR frequency increases with increasing applied force; thus, a carefully selected target frequency will be reached for most pixels at some point in the force versus distance curve. In the iso-CR mode, the cantilever maintains an invariant vibrational shape and a constant environmental damping, thus simplifying interpretation of amplitude and quality factor contrast compared to conventional CRFM. Iso-CR imaging of a piezoelectric AlN thin film sample is demonstrated. Iso-CRFM images were obtained by mechanically driving the base of the cantilever, and iso-CR piezoresponse force microscopy (iso-CR-PFM) images were obtained by electrically biasing the tip. The PFM phase images reveal that the sample contains nanoscale Al-polar (or 'up') and N-polar (or 'down') domains, with approximate to 180 degrees phase contrast between oppositely polarized domains. The PFM amplitude and Q-factor images also show 'up' vs. 'down' domain contrast, which decreases with increasing CR frequency. The frequency-dependent amplitude and Q contrast is ascribed to a frequency-dependent electrostatic contribution to the signal. Domain contrast is not observed in the CRFM (mechanically driven) images. To summarize, the iso-CR capability to control the resonance frequency across multiple excitation schemes helps elucidate the origin of the electromechanical and nanomechanical image contrast.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [21] On the effect of local sample slope during modulus measurements by contact-resonance atomic force microscopy
    Heinze, K.
    Arnould, O.
    Delenne, J-Y
    Lullien-Pellerin, V
    Ramonda, M.
    George, M.
    ULTRAMICROSCOPY, 2018, 194 : 78 - 88
  • [22] Thin film piezoelectric response characterisation using atomic force microscopy with standard contact mode imaging
    Sriram, S.
    Bhaskaran, M.
    Short, K. T.
    Matthews, G. I.
    Holland, A. S.
    MICRON, 2009, 40 (01) : 109 - 113
  • [23] Contact stiffness modulation in contact-mode atomic force microscopy
    Kirrou, Ilham
    Belhaq, Mohamed
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2013, 55 : 102 - 109
  • [24] Contact and non-contact mode imaging by atomic force microscopy
    Morita, S
    Fujisawa, S
    Kishi, E
    Ohta, M
    Ueyama, H
    Sugawara, Y
    THIN SOLID FILMS, 1996, 273 (1-2) : 138 - 142
  • [25] Contact atomic force microscopy using piezoresistive cantilevers in load force modulation mode
    Biczysko, P.
    Dzierka, A.
    Jozwiak, G.
    Rudek, M.
    Gotszalk, T.
    Janus, P.
    Grabiec, P.
    Rangelow, I. W.
    ULTRAMICROSCOPY, 2018, 184 : 199 - 208
  • [26] Resonance tracking ultrasonic atomic force microscopy
    Kobayashi, K
    Yamada, H
    Matsushige, K
    SURFACE AND INTERFACE ANALYSIS, 2002, 33 (02) : 89 - 91
  • [27] Viscoelastic-mapping of cellulose nanofibrils using low-total-force contact resonance force microscopy (LTF-CRFM)
    Kristen M. Hess
    Jason P. Killgore
    Ashutosh Mittal
    Wil V. Srubar
    Cellulose, 2022, 29 : 5493 - 5509
  • [28] Piezoelectric Characteristics of LiNbO3 Thin-film Heterostructures via Piezoresponse Force Microscopy
    Kiselev, D. A.
    Ksenich, S. V.
    Zhukov, R. N.
    Bykov, A. S.
    Malinkovich, M. D.
    Shvartsman, V. V.
    Lupascu, D. C.
    Parkhomenko, Yu. N.
    JOURNAL OF NANO- AND ELECTRONIC PHYSICS, 2013, 5 (04)
  • [29] Enhancement of local piezoelectric properties of a perforated ferroelectric thin film visualized via piezoresponse force microscopy
    Ivanov, M. S.
    Sherstyuk, N. E.
    Mishina, E. D.
    Khomchenko, V. A.
    Tselev, A.
    Mukhortov, V. M.
    Paixao, J. A.
    Kholkin, A. L.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (42)
  • [30] Error estimation and enhanced stiffness sensitivity in contact resonance force microscopy with a multiple arbitrary frequency lock-in amplifier (MAFLIA)
    Flater, Erin E.
    Mugdha, Arya C.
    Gupta, Saurabh
    Hudson, William A.
    Fahrenkamp, Abbigail A.
    Killgore, Jason P.
    Wilson, Jesse W.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (11)